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ABSTRACT

A method for sound field reproduction with the suppression of ex-
terior radiation is proposed, which makes it possible to synthesize
a desired sound field in a reverberant environment without prior
knowledge of the transfer functions of the multiple loudspeakers.
The objective function used to achieve this is formulated as the
weighted sum of the interior reproduction error and exterior radi-
ation power. The optimal driving signals are derived by harmonic
expansion of both the interior and exterior sound fields. In contrast
to the empirical coefficient truncation in the state of the art, in the
proposed method, an optimal weighting of the harmonic coefficients
is derived analytically. Numerical simulation results indicated that
high interior reproduction accuracy and exterior power suppres-
sion can be achieved by the proposed method compared with the
mode-matching method using harmonic-order truncation owing to
the optimal weighting.

Index Terms— sound field reproduction, exterior cancellation,
circular harmonics, loudspeaker array.

1. INTRODUCTION

Sound field reproduction aims at the physical synthesis of a desired
sound field over a target area using multiple loudspeakers. Analyt-
ical approaches to sound field reproduction [1–6] (e.g., wave field
synthesis and higher-order ambisonics), whose principal theory is
based on physical acoustics, have been investigated, particularly in
the last decade. In these methods, transfer functions of the loud-
speakers are typically assumed as analytical directivity functions,
i.e., linear combinations of multipoles or even monopoles [7]. This
assumption obviously limits their feasibility in a reverberant envi-
ronment.

One possible approach to overcome the reverberation problem
is to measure the transfer functions inside the target area by using
multiple microphones [8, 9]. Since it is necessary to measure the
transfer functions between large numbers of microphones and loud-
speakers, this approach can be practically difficult. Moreover, the
transfer functions can vary with changes in the room environment.

A prospective alternative approach is to suppress exterior radia-
tion outside the loudspeakers (i.e., exterior cancellation) as well as
to reproduce the desired sound field inside the target area. Poletti
and Abhayapala [10] proposed a method based on the Kirchhoff–
Helmholtz equation [11], whose basic idea is that the sound field
can be reproduced without exterior radiation by using a continuous
distribution of monopoles and dipoles. Since it is difficult to continu-
ously place monopoles and dipoles and to individually control them
in practice, they are generally replaced by a double-layer array of

loudspeakers [12, 13]. It was also shown that exterior radiation can
be reduced to some extent by using a single-layer array of loudspeak-
ers with fixed directivity [14]. A more flexible and comprehensive
approach is the mode-matching method, which aims to control har-
monic coefficients of a sound field. The mode-matching method was
applied to an array of higher-order loudspeakers to control the more
complex directivity pattern of each array element and to jointly con-
trol the interior and exterior sound fields by Poletti et al. [15]. It is
worth noting that the same formulation can also be applied to other
array geometries such as a double-layer array. However, it is neces-
sary in the mode-matching method to truncate harmonic coefficients
in an empirical manner, which strongly affects its reproduction and
cancellation performances.

We propose a method for sound field reproduction with exte-
rior cancellation based on an analytical weighting of harmonic co-
efficients. As in the mode-matching method, our proposed method
is formulated so as to be applicable to any type of array geometry
and directivity of loudspeakers. An objective function to be min-
imized is formulated as a weighted sum of the reproduction error
of the synthesized interior sound field and the exterior power ra-
diation outside the loudspeakers. The optimal driving signals are
derived by harmonic expansion of the interior and exterior sound
fields, incorporating the analytically derived weighting of the har-
monic coefficients. The use of the optimally weighted harmonic co-
efficients without truncation errors enables high interior reproduc-
tion accuracy and exterior suppression. Numerical experiments are
performed to demonstrate that the proposed method outperforms the
current mode-matching method.

2. PRELIMINARIES

First, we introduce several basic theories and definitions for the har-
monic representation of a sound field as preliminaries. For simplic-
ity, a two-dimensional (2D) sound field is considered in this pa-
per; however, the proposed method can be extended to the three-
dimensional (3D) case with several modifications.

Let Ω be a circular area with center r0. The interior and exterior
sound fields of Ω are expanded around r0 using circular harmonics
as [11]

u(r, ω) =

∞∑
µ=−∞

ůint
µ (r0, ω)φµ(r − r0, ω), r ∈ Ω (1)

and

u(r, ω) =

∞∑
µ=−∞

ůext
µ (r0, ω)ψµ(r − r0, ω), r /∈ Ω, (2)

466978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



respectively. Here, u(r, ω) is the sound pressure of temporal fre-
quency ω at position r, and ůint

µ (r0, ω) and ůext
µ (r0, ω) are the in-

terior and exterior harmonic coefficients, respectively. The interior
and exterior basis functions φµ(r, ω) and ψµ(r, ω) are respectively
defined in polar coordinates r = (r, ϕ) as

φµ(r − r0, ω) = Jµ(kr)exp(jµϕ) (3)
ψµ(r − r0, ω) = Hµ(kr)exp(jµϕ), (4)

where k = ω/c is the wave number with sound velocity c, Jµ(·)
is the µth-order Bessel function of the first kind, and Hµ(·) is the
µth-order Hankel function.

The coefficients ůint
µ (r0, ω) and ůext

µ (r0, ω) have the following
relations:

ůext
µ (r0, ω) =

∞∑
µ′=−∞

Tµ,µ′(r0 − r′
0, ω)̊u

ext
µ′ (r′

0, ω) (5)

ůint
µ (r0, ω) =

∞∑
µ′=−∞

Sµ,µ′(r0 − r′
0, ω)̊u

ext
µ′ (r′

0, ω), (6)

where Tµ,µ′(r, ω) and Sµ,µ′(r, ω) are the translation operators de-
fined as [16]

Tµ,µ′(r, ω) = (−1)µ−µ′
Jµ−µ′(kr)exp(−j(µ− µ′)ϕ) (7)

Sµ,µ′(r, ω) = (−1)µ−µ′
Hµ−µ′(kr)exp(−j(µ− µ′)ϕ). (8)

As shown in [16], the operator Tµ,µ′(r, ω) satisfies the following
equations:

Tµ,µ′(−r, ω) = Tµ′,µ(r, ω)
∗ (9)

Tµ,µ′(r + r′, ω) =

∞∑
µ′′=−∞

Tµ,µ′′(r, ω)Tµ′′,µ′(r′, ω). (10)

Hereafter, ω is omitted for notational simplicity.

3. OBJECTIVE FUNCTION FOR JOINT INTERIOR
REPRODUCTION AND EXTERIOR CANCELLATION

Now, we formulate the objective function for jointly achieving the
reproduction of a desired sound field and suppression of the exterior
radiation. Suppose that L secondary sources (i.e., loudspeakers) are
located at r1, . . . , rL with an arbitrary array geometry. All the sec-
ondary sources are assumed to be inside a circular region ΩS with
center rS. The driving signal and transfer function of the lth sec-
ondary source are denoted by dl and gl(r), respectively. The sound
field synthesized by the L secondary sources is represented as

usyn(r) =

L∑
l=1

dlgl(r). (11)

In the free field, the transfer function gl(r) can be expanded around
rl by using ψµ(r − rl) as

gl(r) =

∞∑
µ=−∞

βl,µψµ(r − rl), (12)

where the coefficient βl,µ corresponds to the directivity of the lth
secondary source. We assume that βl,µ is obtained by modeling or
measuring the directivity.

Our objective is twofold. One is to synthesize a desired sound
field inside a given reproduction area Ωsyn. This can be achieved by

solving the following optimization problem:

minimize
d∈CL

Jint(d) =

∫
Ωsyn

w(r) |usyn(r)− udes(r)|2 dr, (13)

where d = [d1, . . . , dL]
T is the vector of the driving signals, udes(r)

is the desired sound pressure, and w(r) is a spatial weighting func-
tion. The other is to suppress exterior acoustic radiation from the
secondary sources. This can be achieved by solving the following
optimization problem:

minimize
d∈CL

Jext(d) =

∫
∂ΩS

Iext(r)dr, (14)

where ∂ΩS is the boundary of ΩS and Iext(r) is the acoustic inten-
sity in the outward normal direction defined as [11]

Iext(r) =
1

2
Re

[
usyn(r)

j

ρck

∂

∂n
usyn(r)

∗
]
. (15)

Here, ρ is the density of air, Re[·] denotes the real part of the complex
number, and ∂/∂n denotes the normal derivative. The right side of
(14) represents the total acoustic power radiated by the L secondary
sources. To jointly achieve the above two objectives (13) and (14),
we consider the following optimization problem:

minimize
d∈CL

J (d) = Jint(d) + γJext(d), (16)

where γ ∈ [0,∞) is a constant parameter used to balance the two
objective functions.

4. DERIVATION OF OPTIMAL DRIVING SIGNALS

We here derive the optimal driving signals minimizing J (d) on the
basis of the harmonic analysis introduced in Sect. 2. First, Jint(d)
is rewritten by substituting (11) into (13) as

Jint(d) = dHAintd− dHbint − bH
intd+ cint, (17)

where Aint ∈ CL×L, bint ∈ CL, and cint ∈ R are given by

(Aint)l1,l2 =

∫
Ωsyn

w(r)gl1(r)
∗gl2(r)dr (18)

(bint)l =

∫
Ωsyn

w(r)gl(r)
∗udes(r)dr (19)

cint =

∫
Ωsyn

w(r)|udes(r)|2dr. (20)

Here, (·)l1,l2 denotes the (l1, l2)th element of the matrix and (·)l
denotes the lth element of the vector. Although (18), (19), and (20)
include a domain integral, they can be efficiently calculated without
a numerical integral by expanding the sound field inside Ωsyn for
several w(r) [17, 18]. In this paper, we focus on the case where
Ωsyn is a single circular area with center rsyn and radius Rsyn and
w(r) is the uniform distribution on Ωsyn [17]. The transfer functions
and the desired sound field are expanded around rsyn as

gl(r) =

∞∑
µ=−∞

g̊intl,µ(rsyn)φµ(r − rsyn), r ∈ Ωsyn (21)

udes(r) =

∞∑
µ=−∞

ůint
des,µ(rsyn)φµ(r − rsyn), r ∈ Ωsyn. (22)
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The interior harmonic coefficient of gl(r) is obtained from (6) and
(12) as

g̊intl,µ(rsyn) =

∞∑
µ′=−∞

Sµ,µ′(rsyn − rl)βl,µ′ . (23)

By substituting (21) and (22) into (18) and (19), we obtain

(Aint)l1,l2 =
∞∑

µ=−∞

ẘµg̊
int
l1,µ(rsyn)

∗g̊intl2,µ(rsyn) (24)

(bint)l =

∞∑
µ=−∞

ẘµg̊
int
l,µ(rsyn)

∗ůint
des,µ(rsyn) (25)

with

ẘµ =

∫
Ωsyn

w(r)|φµ(r)|2dr

= Jµ(kRsyn)
2 − Jµ−1(kRsyn)Jµ+1(kRsyn). (26)

Equations (24) and (25) can be calculated by truncating the sum-
mation at a sufficiently large order because ẘµ sufficiently decays
for large µ. The detailed derivation of the above equations is given
in [17].

Next, Jext(d) is simplified in a similar manner as described
in [11] for the 3D case as

Jext(d) =
2

ρck

∞∑
µ=−∞

|̊uext
syn,µ(rS)|2. (27)

The exterior harmonic coefficient ůext
syn,µ(rS) is represented as

ůext
syn,µ(rS) =

L∑
l=1

dlg̊
ext
l,µ (rS). (28)

From (5), (27), and (28), we obtain

Jext(d) = dHAextd, (29)

where Aext ∈ CL×L is given by

(Aext)l1,l2 =
2

ρck

∞∑
µ=−∞

g̊extl1,µ(rS)
∗g̊extl2,µ(rS)

=
2

ρck

∞∑
µ1=−∞

∞∑
µ2=∞

β∗
l1,µ1

βl2,µ2

·
∞∑

µ=−∞

Tµ,µ1(rS − rl1)
∗Tµ,µ2(rS − rl2)

=
2

ρck

∞∑
µ1=−∞

∞∑
µ2=−∞

β∗
l1,µ1

βl2,µ2Tµ1,µ2(rl1 − rl2).

(30)

The last line of (30) is derived by applying (9) and (10) to the second
line. This equation indicates that Aext is independent of the position
and size of ΩS. Furthermore, when the directivity of the secondary
sources is represented by a finite order N (i.e., βl,µ = 0 for |µ| >
N ), the summations in (30) consist of finite elements and can be
accurately calculated without truncation errors.

Finally, J (d) is rewritten as

J (d) = dH (Aint + γAext)d− dHbint − bH
intd+ cint. (31)

Fig. 1: Interior and exterior weights in proposed method (Proposed)
and mode-matching method (MM).

Since (31) is a quadratic function of d, the optimal driving signals d̂
are given by

d̂ = (Aint + γAext + λIL)
−1 bint, (32)

where IL is the L × L identity matrix and λ ∈ [0,∞) is a regular-
ization parameter.

5. COMPARISON WITH MODE-MATCHING METHOD

We here discuss the difference between the proposed method and
the mode-matching method [15]. In the mode-matching method, the
driving signals are obtained by solving the following mode-matching
equations:

L∑
l=1

dlg̊
int
l,µ(rsyn) = ůint

des,µ(rsyn), µ ∈ {−Mint, . . . ,Mint} (33)

L∑
l=1

dlg̊
ext
l,µ (rS) = 0, µ ∈ {−Mext, . . . ,Mext}, (34)

where Mint and Mext are truncation orders. The solution of (33)
and (34) is

d = (Āint + Āext + λIL)
−1b̄int (35)

with

(Āint)l1,l2 =

Mint∑
µ=−Mint

g̊intl1,µ(rsyn)
∗g̊intl2,µ(rsyn) (36)

(b̄int)l =

Mint∑
µ=−Mint

g̊intl,µ(rsyn)
∗ůint

des,µ(rsyn) (37)

(Āext)l1,l2 =

Mext∑
µ=−Mext

g̊extl1,µ(rS)
∗g̊extl2,µ(rS). (38)

By comparing (24), (25), and the first line of (30) with (36), (37), and
(38), respectively, we can see that the difference between these two
methods is in the weighting of the interior and exterior harmonic co-
efficients. Figure 1 shows an example of the weights in the proposed
method and the mode-matching method for kRsyn = 20 rad. Here,
the weights are scaled so that the zeroth-order values correspond to
1. In the mode-matching method, appropriate truncation ordersMint

and Mext have to be determined in an empirical manner. In the pro-
posed method, on the other hand, the interior and exterior harmonic
coefficients are optimally weighted, where the weights are derived
analytically by (26) and (30). Note that the infinite-order exterior
harmonic coefficients are uniformly weighted by (30).
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(a) Proposed (b) MM

Fig. 2: Reproduced sound pressure distributions at 600Hz.

(a) Proposed (b) MM

Fig. 3: Normalized error distributions at 600Hz.

6. NUMERICAL SIMULATIONS

Numerical simulations were conducted to evaluate the proposed
method using a circular higher-order loudspeaker array in com-
parison with the mode-matching method [15]. The circular array
consists of 12 ideal third-order loudspeakers. The proposed and
mode-matching methods are denoted as Proposed and MM, respec-
tively. In Cartesian coordinates r = (x, y), the center and radius of
the circular array were set to (0.0, 0.0) m and 1.5m, respectively.
Each third-order loudspeaker was assumed to be seven individual
multipoles (from -3rd to 3rd order), and the amplitude of the µth-
order multipole was set to 1/kRholH

′
µ(kRhol) with Rhol = 0.2m

as described in [15]. The sound speed was set to 340.29m/s. The
desired sound field was a plane wave propagating in the y direction,
i.e., udes(r) = exp(jky).

In Proposed, the reproduction area Ωsyn was set as a single cir-
cular area with center (0.0, 0.0) m and radius 1.2m, and (24) and
(25) were truncated at µ = ±⌈5kRsyn⌉. In MM, the truncation
orders Mint and Mext were determined as described in [15] with a
mode order regulation factor of 0.75. For fair comparison between
Proposed and MM, Aint and bint were scaled by 1/ẘ0 and γ was
set as ρck/2 in Proposed as in Fig. 1. The regularization parameter
λ was set as 1.0× 10−3 in both methods.

To evaluate the reproduction accuracy and exterior cancellation
performances, we define the signal-to-distortion ratio (SDR) and
suppression-power ratio (SPR) as

SDR(ω) = 10 log10

∫
Ωsyn

|udes(r, ω)|2dr∫
Ωsyn

|usyn(r, ω)− udes(r, ω)|2dr
(39)

SPR(ω) = 10 log10

∫
Ωext

|udes(r, ω)|2dr∫
Ωext

|usyn(r, ω)|2dr
, (40)

where Ωext was set as the area bounded by two circles of radii 2.0
and 2.5m. Here, udes(r) in (39) and (40) is the original desired
sound field, i.e., the plane-wave field. SDRs and SPRs were calcu-
lated from 50Hz to 1000Hz at intervals of 50Hz.

Figure 2 shows the reproduced pressure distribution at 600Hz.
The normalized error and power distributions, 10 log10 |usyn(r) −

(a) Proposed (b) MM

Fig. 4: Normalized power distributions at 600Hz.

Fig. 5: SDR and SPR plotted against frequency.

udes(r)|2/|udes(r)|2 and 10 log10 |usyn(r)|2/|udes(r)|2, are also
shown in Figs. 3 and 4, respectively, where udes(r) is the plane-wave
field in the entire region. The black dots represent the loudspeaker
positions, and the dashed lines in Figs. 3 and 4 represent Ωsyn and
Ωext, respectively. The SDRs of Proposed and MM were 34.46 and
24.23 dB, and their SPRs were 35.27 and 18.74 dB, respectively.
The interior reproduction accuracy of Proposed was higher than that
of MM, especially around the boundary of Ωsyn (see Fig. 3). Fur-
thermore, Proposed achieved high exterior radiation suppression,
whereas undesired exterior radiation can be seen in MM (see Fig. 4).
The principal cause of the performance degradation of MM in these
results is the truncation of the harmonic coefficients at Mint and
Mext.

The SDR and SPR are plotted against the frequency in Fig. 5. At
most frequencies, Proposed achieved a higher SDR than MM. The
SPRs of both methods were comparable below 500Hz; however, the
SPR for Proposed above 500Hz was much higher than that for MM,
which is due to the optimal weighting of the harmonic coefficients.

7. CONCLUSION

We proposed a method for sound field reproduction with the sup-
pression of exterior radiation. By minimizing an objective function
consisting of the interior reproduction error and exterior radiation
power, the optimal driving signals are derived on the basis of circu-
lar harmonic expansion of the interior and exterior sound fields. The
advantage of the proposed method lies in the analytically derived
weighting of the harmonic coefficients, whereas empirical truncation
is required in the mode-matching method. The optimal weighting
enables high reproduction accuracy and exterior power suppression
compared with the current mode-matching method, which was val-
idated by numerical experiments in 2D sound fields. Experimental
validation in a practical 3D space will be a future work.
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