
CLASSIFICATION VS. REGRESSION IN SUPERVISED LEARNING
FOR SINGLE CHANNEL SPEAKER COUNT ESTIMATION

Fabian-Robert Stöter, Soumitro Chakrabarty, Bernd Edler, Emanuël A. P. Habets

International Audio Laboratories Erlangen, Germany∗

ABSTRACT
The task of estimating the maximum number of concurrent speakers
from single channel mixtures is important for various audio-based
applications, such as blind source separation, speaker diarisation,
audio surveillance or auditory scene classification. Building upon
powerful machine learning methodology, we develop a Deep Neu-
ral Network (DNN) that estimates a speaker count. While DNNs
efficiently map input representations to output targets, it remains un-
clear how to best handle the network output to infer integer source
count estimates, as a discrete count estimate can either be tackled as
a regression or a classification problem. In this paper, we investi-
gate this important design decision and also address complementary
parameter choices such as the input representation. We evaluate a
state-of-the-art DNN audio model based on a Bi-directional Long
Short-Term Memory network architecture for speaker count estima-
tions. Through experimental evaluations aimed at identifying the
best overall strategy for the task and show results for five seconds
speech segments in mixtures of up to ten speakers.

Index Terms— speaker count estimation, number of concurrent
speakers, overlapped speech, cocktail-party

1. INTRODUCTION

In a “cocktail-party” scenario with many concurrent speakers, differ-
ent applications may be envisioned such as localization, crowd mon-
itoring, surveillance, speech recognition or speaker separation. In
this scenario, a typical assumption is that the number of concurrent
speakers is known, which turns out to be of paramount importance
for the effectiveness of subsequent processings. Unfortunately, in
real world applications, information about the actual number of con-
current speakers is often not available. Surprisingly, very few meth-
ods have been proposed to address the task of counting the number
of speakers.

Estimating the maximum number of concurrent speakers is
closely related to the more difficult problem of identifying them,
which is the topic of speaker diarisation (who speaks when) [1]. We
call a system that identifies speakers first, “counting by detection”.
These systems often use segments where only one speaker is active
to discriminate the speakers. Then comparisons of found segments
are made to discriminate and temporally locate the speakers within a
given recording. When sources are fully overlapped as in real “cock-
tail party” environments, such a segmentation is hardly feasible. And
when a speaker overlap is as prevalent as in a “cocktail-party” sce-
nario, developing an algorithm to detect speakers is challenging.
In this study we therefore attempt to directly estimate a speaker
count instead of counting them after identification. We refer to this
strategy as “direct count estimation”.

∗A joint institution of the Friedrich-Alexander-Universität Erlangen-
Nürnberg (FAU) and Fraunhofer Institute for Integrated Circuits (IIS).

A

0.0 0.6 1.2 1.9 2.5 3.0

Time in seconds

k = 32 2 23 3 3 3

B

C

Fig. 1: Illustration of our application scenario of three concurrent
speakers and their respective speech activity. Bottom plot shows the
number of concurrently active speakers and its maximum k which is
our targeted output.

In multichannel signal processing, count estimation usually is
achieved by estimating directions of arrival (DoA) and clustering
them [2, 3]. The first single channel method, based on threshold-
ing amplitude modulation patterns, was proposed in [4]. In [5],
the authors propose an energy feature based on temporally aver-
aged mel-scale filter outputs. In a more recent work [6], the num-
ber of speakers is estimated by applying hierarchical clustering on
fixed-length audio segments. The main weakness of this method is
to rely on the assumption that there are segments where only one
speaker is active. In another vein, Andrei et.al. [7] proposed an al-
gorithm which correlates single frames of multi-speaker mixtures
with a set of single-speaker utterances. Motivated by the recent
and impressive successes of deep learning approaches in various
audio-related tasks [8, 9], we focus on developing such a method
for direct count estimation. In computer vision, (object) count es-
timation using DNNs has recently achieved state-of-the-art perfor-
mance [10–18]. Two main paradigms may be found in the literature
for this purpose, namely, regression and classification.

In this work we want to build upon these findings to achieve
direct count estimation of speakers. Our main contributions are: i)
to formulate the speaker count estimation problem as either a clas-
sification or a regression task, and ii) to propose a neural network
architecture based on a state-of-the-art BLSTM network, to infer the
number of speakers from short audio segments of 5s. Finally, we
present experimental results for the different problem formulations
as well as input feature representations to identify the best strategy
for this task. For the sake of reproducibility, pre-trained network and
the test dataset are made available for download on the accompany-
ing website.1

1https://www.audiolabs-erlangen.de/resources/
2017-CountNet

436978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

2. PROBLEM FORMULATION

We consider the task of estimating the maximum number of concur-
rent speakers, k ∈ Z+

0 , in a single channel audio mixture x. This is
achieved by applying a mapping from x to k. Let x be a time domain
signal ofN samples, representing a linear mixture ofL unique single
speaker speech signals sl. Naturally, not all speakers l = 1, . . . , L
are active at every time instance. We therefore, for each sample n,
introduce a latent binary speech activity variable vnl ∈ {0, 1}. Then,
our task is to estimate

k = max
n

(
L∑
l=1

vnl

)
. (1)

It can be seen that our proposed task of estimating k ≤ L is more
closely related to source separation whereas the estimation ofL itself
is more useful for tasks where speakers do not overlap. We assume
that no additional prior information except the maximum number of
concurrent speakers, kmax, is available, representing an upper limit
for estimation. In Figure 1, we illustrate our setup in a “cocktail-
party” scenario featuring L = k = 3 speakers. For the DNN sys-
tem proposed in this paper, we use a non-negative time-frequency
(TF) input representation X ∈ RD×F+ instead of x, where D and
F denote the total number of time frames and frequency sub-bands,
respectively.

2.1. Estimation in a Deep Learning Framework

In this study, we choose a deep neural network (DNN) as the map-
ping function fθ from the input X to the output y, given by y =
fθ (X), where the optimal parameters (weights) θ are learned via
supervised training. The output of the DNN is not necessarily the
direct source count k, therefore we introduce q (·) as a decision func-
tion, such that

k̂ = q (fθ (X)) . (2)

The DNN is trained in a supervised manner using a training database
of {X, k} examples. In this work, we want to investigate three dif-
ferent choices for the output distributions of the DNN, as well as the
corresponding decision functions q (·).
Classification: Here the output distribution is directly taken as
discrete, discarding any meaning concerning the ordering of the dif-
ferent possible values. Given some particular input X, the network
generates the posterior output probability for (kmax + 1) classes
(including k = 0) using the softmax activation function, and a max-
imum a posteriori (MAP) decision function is chosen that simply
picks the most likely class q = argmax(·). Notwithstanding its
conceptual simplicity, classification has two drawbacks. First, the
intuitive ranking between different estimates is lost: e.g. p(k = 6)
may not depend on p(k = 5). Second, the largest possible count
kmax is given a priori. Despite these limitations, classification-based
approaches have successfully been applied in deep neural networks
for counting objects [12, 13, 18] in images.
Gaussian Regression: In regression, k is derived from an output
distribution defined on the real line. The output distribution in this
setting is assumed to be Gaussian and the associated cost function
is the classical squared error. During inference and given the out-
put fθ (X) of the network, the best discrete value that is consistent
with the model is simply the rounding operator q = [·]. Gaussian
regression has achieved state-of-the-art counting performance in
computer vision using deep learning frameworks [14–17].
Discrete Poisson modelling: When it comes to modelling count

data, it is often shown effective to adopt the Poisson distribu-
tion [19]. First, this strategy retains the advantage of the classi-
fication approach to directly pick a probabilistic model over the
actual discrete observations, avoiding the somewhat artificial trick
of introducing a latent variable that would be rounded to yield the
observation. Second, the model avoids the inconvenience of the
classification approach to completely drop dependencies between
classes.

Due to these advantages, the Poisson distribution has been used
in studies devising deep architectures for counting systems [20]. For
instance in [19–21], it is shown that the number of objects in im-
ages can be well modelled by the Poisson distribution. Inspired by
these previous works, we also consider the Poisson output distribu-
tion P (k | fθ (X)) where P (· | λ) denotes the Poisson distribution
with scale parameter λ.

In this setup, the cost function at learning time is the Poisson
negative log-likelihood and the deep architecture at test time pro-
vides the predicted scale parameter fθ (X) ∈ R+, which summa-
rizes the whole output distribution.

As a decision function q in this setting, we considered several
alternatives. A first option is to again resort to MAP estimation and
pick the mode [fθ (X)] of the distribution as a point estimate. How-
ever, experiments showed that the posterior median yields better es-
timates, and is given by

q (fθ (X)) = argmin
k̂

∞∑
k=0

∣∣∣k̂ − k∣∣∣P (k | fθ (X)) (3a)

= median (k ∼ P (fθ (X))) (3b)

where the median of a Poisson distributed random variable was ap-
proximated given the expression in [22].

3. PROPOSED MODEL

Various audio-related applications share common DNN architec-
ture designs, often found by incorporating domain knowledge and
through extensive hyperparameter searches. For our proposed task
of source count estimation, however, domain knowledge is diffi-
cult to incorporate, as this study aims at revealing the best strategy
to address the problem. Therefore, we use a network built upon
an existing BLSTM-RNN architecture, that has already shown a
considerable amount of generalization for various audio applica-
tions [23, 24].

A recurrent neural network (RNN) is very similar to a fully con-
nected network, except that RNN applies the same set of weights
recursively over an input sequence. RNNs can detect structure in se-
quential data of arbitrary length. This makes it ideal to model time
series, however, in practice, the temporal context learnt is limited to
only a few time instances, because of the vanishing gradient prob-
lem [25].

To alleviate this problem, forgetting factors (also called gating)
were proposed. One of the most popular gated recurrent cells is
the Long Short-Term Memory (LSTM) [26] cell. Its effectiveness
has been proven in various applications and LSTMs are the state-
of-the-art approach for speech recognition [27] or singing voice
detection [23]. In this work we employed a bi-directional LSTM
(BLSTM) with three hidden layers whose sizes are 30, 20 and 40
similar to the architecture introduced in [23]. A BLSTM is more
robust compared to a simple LSTM, since input information from
both past as well as the future in used to learn the weights. For
further information on BLSTMs, the reader is referred to [28].

437

Output Type Activation Dim. Loss

Classification Softmax Bkmax+1 Cat. cross entropy
Gaussian Regr. Linear R1 MSE
Poisson Regr. Exponential R1 Neg. log likelihood

Table 1: Output Activation Functions and Loss Functions

For a given input sequence, the output of a recurrent layer is
either only the last step output or a full sequence. We found that
employing the full sequence output of the last recurrent layer before
feeding it into the fully connected output layer is important in the
context of RNNs for count estimation. Furthermore we added a tem-
poral max pooling layer with pooling size 2 to reduce the number
of parameters for the fully connected layer. Temporal max pooling
intuitively fits to our problem formulation which in itself is a maxi-
mum of the number of sources in a specific number of frames.

As we introduced in Section 2.1, the count estimation problem
can be addressed using three different strategies. For each of the
decision functions a suitable output activation and loss is used as
shown in Table 1. Except for these (output) parameters, all models
have the same parameters.

4. TRAINING

Since a realistic dataset of fully overlapped speakers is not avail-
able, we chose to generate synthetic mixtures. We recognize that in
a simulated “cocktail-party” environment, mixtures lack the conver-
sational aspect of human communication but provide a controlled
environment which helps understand how a DNN solves the count
estimation problem. As we aim for a speaker independent solution,
we selected a speech corpus with a large number of different speak-
ers instead of large number of utterances, yielding a larger number
of unique mixtures. For training we selected the LibriSpeech clean-
360 [29] dataset which includes 363 hours of clean speech of English
utterances from 921 speakers (439 female and 482 male speakers).
As revealed in Section 2, the maximum number of concurrent speak-
ers k requires annotation of the activity of each individual speaker.
Even though LibriSpeech comes with annotations, they often are not
consistent across different corpora. We therefore generated anno-
tations based on a voice activity detection algorithm (VAD). In this
work, we used the implementation from the Chromium Web Browser
that is part of the WebRTC Standard [30].

To generate a single training sample {X, k}, we draw a unique
set of L speakers from the corpus. For each of the speakers we then
select a random utterance, resampled to 16 kHz sampling rate and
apply VAD. The VAD method was configured using a hop size of
10 ms. Further, the VAD estimate was used to remove silence in
the beginning and the end of an utterance recording. In the next
step, more utterances from the same speaker are drawn from the cor-
pus until the desired duration is reached. Both, the audio recording
and the VAD annotation of each utterance is concatenated. The pro-
cedure is repeated for all speakers so that L time domain signals
are created. The signals are mixed and peak normalized to avoid
clipping. Mixtures are then transformed to a time-frequency matrix
X ∈ D × F as defined in Section 2. The ground truth output k are
then computed using the VAD matrix based on Equation 1.

We follow the proposal of [10] and include non-speech exam-
ples in our training data to avoid using zero input samples for k = 0.
For this, we used the TUT Acoustic Scenes dataset [31] to create
negative training samples using the same procedure as described

above. Because these environmental sounds could include speech,
scenes with cafe/restaurant, grocery store and metro
station were omitted.

As our application closely relates to source separation it is de-
sirable for our trained DNN system to be robust against gain vari-
ations. We therefore find it important to make sure that the DNN
cannot leverage the gain factors of the mixture. We found that the
averaged energy of one bin across all frames of the input sample
already is a solid indicator for the number of speakers. To accomo-
date these findings, we normalize X to the average Euclidean norm
of all frames as used in [32]. Additionally, as common in machine
learning, we scale the normalized input representation so that the
feature dimensions have zero mean and unit variance/standard devi-
ation across the whole training dataset.

To train the network we use Poisson sampling to balance the
number of samples Tk for each k. For our experiments we chose
a medium-sized training dataset of Tk = 1820 samples ∀k ∈
[0, . . . , 10] resulting in a total of 20,020 training items, each con-
taining 10 seconds of audio, resulting in 55.55 hours of training ma-
terial. The actual duration of each input is reduced to five seconds
by selecting a random excerpt from each mixture. For each excerpt
Equation 1 is evaluated to generate a single sample, then combined
into mini-batches of 32 samples. This way the network is seeing
slightly different samples (in different order) in each training epoch.
We found this procedure (also used in [33]) to help speeding up the
stochastic gradient based training process. The DNN is trained us-
ing the ADAM optimizer [34]. In addition to the training dataset we
created a separate validation dataset of Tk = 5720 samples using a
different set of speakers from LibriSpeech dev-clean. Early stopping
is applied by monitoring the validation loss to reduce the effect of
overfitting. Training never exceeded 50 epochs.

5. EVALUATION

We evaluated our proposed network architecture with two main pa-
rameters: the three proposed output distributions (see Section 2) and
four different input representations. To allow for a controlled test
environment and at the same time limit the number of training it-
erations, we fix certain parameters: In our experiment all speakers
were mixed to 0 dB SNR. For all experimental parameters we ran
the training three times with different random seeds for each run
and report averaged the results to minimize random effects caused
by early stopping. We used the LibriSpeech test-clean subsets to
generate 5720 unique and unseen speaker mixtures of five seconds
duration for the test set with kmax = L = 10.
Since we are dealing with a novel task description, related speaker
count estimation techniques like those introduced in Section 1, could
hardly be used as baselines. Specifically, [6] does not work on fully
overlapped speech, [7] does not scale to the size of our dataset, since
it requires to cross-correlate the full database against another. Fi-
nally, [5] proposes a feature but does not employ a fully automated
system. We translated this method into a data-driven approach and
employed a vector quantizer to get an optimal mapping with respect
to the sum of squares criterion (we refer to this as VQ).

5.1. Input Representations

For our task, we chose several different input representations, well-
established in speech application. We expect that a high frequency
resolution is needed to discriminate time frequency bins with over-
lapped speech segments from those that only belong to a single
speaker. We compared the following input representations that were

438

0 1 2 3 4 5 6 7 8 9 10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

k

M
A

E

Classification
Gaussian Regr.
Poisson Regr.

(a) Output Distribution

0 1 2 3 4 5 6 7 8 9 10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

k

M
A

E

MEL40
MFCC20
STFT
STFTLOG

(b) Feature Representation

Fig. 2: Mean absolute error (MAE) over ground truth count k = [0 . . . 10]. Error bars
show the 95% confidence intervals. Results are averaged over the different feature repre-
sentations (a) and output distributions (b).

0 1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5
6
7
8
9

10

k

k̂

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3: Normalized confusion matrix show-
ing k̂ over k for the test data of the best per-
forming network (Output Distribution: Clas-
sification, Feature Representation: STFT).

all based on a frame length of 25 ms:
STFT: magnitude of the Short-time Fourier transform computed
using Hann windows. The resulting input is X ∈ R500×201.
LOGSTFT: logarithmically scaled magnitudes from STFT rep-
resentation using log(1 + STFT). The resulting input is X ∈
R500×201.
MEL40: compute mapping from the STFT output directly onto Mel
basis using 40 triangular filters. The resulting input isX ∈ R500×40.
MFCC20: First 20 Mel-frequency cepstral coefficients. The result-
ing input is X ∈ R500×20.

Before feature transformation, all input files were resampled to
16 kHz sampling rate. All features are computed using a hop size of
10 ms.

5.2. Metric

While the intermediate output y is treated as either a classification or
a regression problem (See Section 2), we evaluate the final output k
as a discrete regression problem. We therefore evaluate the perfor-
mance using the mean absolute error (MAE), which is also used to
evaluate other count related tasks (c.f. [14, 20]).

5.3. Results

To find the best parameters, we performed training and evaluation
for the parameters, resulting in 36 trained networks. On average
each network was trained 33 epochs before early stopping was en-
gaged. Training duration was about 800 seconds per epoch on a
NVIDIA GTX 1080 GPU. We present the results in terms of input
representation and output distribution in Figure 2. One can see that
the overall trend of the count error in MAE is similar regardless of
the parametrisation: all models are able to reliably distinguish be-
tween k = 0 and k = 1, followed by a nearly linear increase in
MAE for k = [1 . . . 7]. For k > 7 it can be seen that the classifi-
cation networks have learned the maximum of k across the dataset,
hence the prediction error decreases when k reaches its maximum.
This is because classification based models intrinsically have access
to the maximum number of sources determined by the output vector
dimensionality.

Figure 2a indicates that Classification outperforms the other two
distributions while Poisson regression performs better than Gaus-
sian regression which confirms the findings made in [20] on object

counts. With respect to the input representation, as shown in Fig-
ure 2b, despite its larger input dimension, choosing linear STFT
as generally results in a better performance compared to MEL40,
LOGSTFT or MFCC20.

A detailed analysis of all distribution and feature combinations,
not shown here due to space constraints, reveals that STFT + Classi-
fication performs best. This model achieves results of (MAE 0.38±
0.28) for k = [0 . . . 10] while the VQ baseline (MAE 2.41 ± 1.08)
only performs slightly better than a mean estimator predicting k̂ = 5
(MAE 2.73 ± 1.63). To show the level of overestimation or under-
estimation, we depict all responses in a confusion matrix (see Fig-
ure 3). Unlike humans that generally tend to underestimate for the
task of speaker count estimation [35], one can see that our proposed
model slightly overestimates for smaller k.

6. CONCLUSION AND OUTLOOK

We introduced the task of estimating the maximum number of con-
current speakers in a simulated “cocktail-party” environment using a
data-driven approach. We evaluated three different methods to out-
put integer source count estimates in conjunction with defining cost
function over which to optimize. Our experiments revealed a trade-
off between better overall performance but requiring the maximum
number of speakers to be estimated as prior knowledge (classifica-
tion) and slightly worse performance when treated as a regression
problem using Poisson distribution. Furthermore, we investigated
and evaluated suitable input representations. Our final proposed
BLSTM based classification model achieves mean absolute error of
less than 0.4 speakers for zero to ten speakers. We think this first
study on data-driven speaker count estimation opens the field to in-
teresting and new research. Future work would be to evaluate and
optimize other network structures such as convolutional neural net-
works and investigate the strategy a machine learning source count
model pursues to solve the problem.

Acknowledgements

The authors gratefully acknowledge the compute resources and sup-
port provided by the Erlangen Regional Computing Center (RRZE).

439

7. REFERENCES

[1] S. E. Tranter and D. A. Reynolds, “An overview of automatic
speaker diarization systems,” IEEE Trans. Audio, Speech,
Lang. Process., vol. 14, no. 5, pp. 1557–1565, 2006.

[2] S. Mirzaei, Y. Norouzi, et al., “Blind audio source counting and
separation of anechoic mixtures using the multichannel com-
plex nmf framework,” Signal Processing, vol. 115, pp. 27–37,
2015.

[3] O. Walter, L. Drude, and R. Haeb-Umbach, “Source counting
in speech mixtures by nonparametric bayesian estimation of
an infinite Gaussian mixture model,” in Proc. IEEE (ICASSP),
2015, pp. 459–463.

[4] T. Arai, “Estimating number of speakers by the modulation
characteristics of speech,” in Proc. IEEE (ICASSP), 2003,
vol. 2, pp. II–197.

[5] H. Sayoud and S. Ouamour, “Proposal of a new confidence
parameter estimating the number of speakers-an experimental
investigation,” Journal of Information Hiding and Multimedia
Signal Processing, vol. 1, no. 2, pp. 101–109, 2010.

[6] C. Xu, S. Li, G. Liu, Y. Zhang, E. Miluzzo, Y.-F. Chen, J. Li,
and B. Firner, “Crowd++: Unsupervised speaker count with
smartphones,” in Proceedings of the 2013 ACM UbiComb 13.
ACM, 2013, pp. 43–52.

[7] V. Andrei, H. Cucuand, A. Buzo, and C. Burileanu, “Counting
competing speakers in a time frame - human versus computer,”
in Proc. Interspeech Conf., 2015.

[8] D. Yu, M. Kolbæk, Z.-H. Tan, and J. Jensen, “Permutation in-
variant training of deep models for speaker-independent multi-
talker speech separation,” in Proc. IEEE (ICASSP), 2017.

[9] J.R. Hershey, Z. Chen, J. Le Roux, and S. Watanabe, “Deep
clustering: Discriminative embeddings for segmentation and
separation,” in Proc. IEEE (ICASSP), Mar. 2016, pp. 31–35.

[10] C. Wang, H. Zhang, L. Yang, S. Liu, and X. Cao, “Deep peo-
ple counting in extremely dense crowds,” in Proc. ACM Intl.
Conference on Multimedia (ACMMM). ACM, 2015, pp. 1299–
1302.

[11] P. Chattopadhyay, R. Vedantam, R. R. Selvaraju, D. Batra, and
D. Parikh, “Counting everyday objects in everyday scenes,” in
Proc. Intl. IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), July 2017.

[12] A. Khan, S. Gould, and M. Salzmann, “Deep convolutional
neural networks for human embryonic cell counting,” in Eu-
ropean Conference on Computer Vision. Springer, 2016, pp.
339–348.

[13] S. Seguı́, O. Pujol, and J. Vitria, “Learning to count with deep
object features,” in Proc. Intl. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2015, pp. 90–96.

[14] C. Zhang, H. Li, X. Wang, and X. Yang, “Cross-scene crowd
counting via deep convolutional neural networks,” in Proc.
Intl. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 833–841.

[15] C. Arteta, V. Lempitsky, and A. Zisserman, “Counting in the
wild,” in European Conference on Computer Vision. Springer,
2016, pp. 483–498.

[16] M. Marsden, K. McGuiness, S. Little, and N. E. O’Connor,
“Fully convolutional crowd counting on highly congested
scenes,” arXiv preprint arXiv:1612.00220, 2016.

[17] L. Boominathan, S. SS. Kruthiventi, and R. V. Babu, “Crowd-
net: A deep convolutional network for dense crowd counting,”
in Proc. ACM Intl. Conference on Multimedia (ACMMM).
ACM, 2016, pp. 640–644.

[18] J. Zhang, S. Ma, M. Sameki, S. Sclaroff, M. Betke, Z. Lin,
X. Shen, B. Price, and R. Mech, “Salient object subitizing,”
in Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CCVPR), 2015, pp. 4045–4054.

[19] N. Fallah, H. Gu, K. Mohammad, S. A. Seyyedsalehi,
K. Nourijelyani, and M. R. Eshraghian, “Nonlinear poisson
regression using neural networks: a simulation study,” Neural
Computing and Applications, vol. 18, no. 8, pp. 939, 2009.

[20] S. H. Rezatofighi, V. Kumar BG, A. Milan, E. Abbasnejad,
A. Dick, and I. Reid, “DeepSetNet: Predicting sets with deep
neural networks,” in Proc. IEEE Intl. Conference on Computer
Vision (ICCV), 2017.

[21] A. B. Chan and N. Vasconcelos, “Bayesian poisson regression
for crowd counting,” in Proc. IEEE Intl. Conference on Com-
puter Vision (ICCV). IEEE, 2009, pp. 545–551.

[22] K. P. Choi, “On the medians of gamma distributions and an
equation of ramanujan,” Proceedings of the American Mathe-
matical Society, vol. 121, no. 1, pp. 245–251, 1994.

[23] S. Leglaive, R. Hennequin, and R. Badeau, “Singing voice
detection with deep recurrent neural networks,” in Proc. IEEE
(ICASSP), April 2015, pp. 121–125.

[24] G. Hagerer, V. Pandit, F. Eyben, and B. Schuller, “Enhanc-
ing LSTM RNN-Based speech overlap detection by artificially
mixed data,” in Proc. Audio Eng. Soc. Conference on Semantic
Audio, Jun 2017.

[25] S. Hochreiter, “The vanishing gradient problem during learn-
ing recurrent neural nets and problem solutions,” Int. J. Uncer-
tain. Fuzziness Knowl.-Based Syst., vol. 6, no. 2, pp. 107–116,
Apr. 1998.

[26] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[27] A. Graves, A. r. Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” in Proc. IEEE (ICASSP),
May 2013, pp. 6645–6649.

[28] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning,
MIT Press, 2016, http://www.deeplearningbook.
org.

[29] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: an asr corpus based on public domain audio books,”
in Proc. IEEE (ICASSP). IEEE, 2015, pp. 5206–5210.

[30] “WebRTC VAD v2.0.10,” https://github.com/
wiseman/py-webrtcvad/tree/2.0.10.

[31] A. Mesaros, T. Heittola, and T. Virtanen, “TUT database
for acoustic scene classification and sound event detection,”
in Proc. European Signal Processing Conf. (EUSIPCO), Bu-
dapest, Hungary, 2016.

[32] S. Uhlich, F. Giron, and Y. Mitsufuji, “Deep neural net-
work based instrument extraction from music,” in Proc. IEEE
(ICASSP), April 2015, pp. 2135–2139.

[33] J. Schlüter, “Learning to pinpoint singing voice from weakly
labeled examples,” in Proc. of ISMIR), 2016, pp. 44–50.

[34] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” in ICLR, 2014.

[35] T. Kawashima and T. Sato, “Perceptual limits in a simulated
cocktail party,” Attention, Perception and Psychophysics, vol.
77, no. 6, pp. 2108–2120, 2015.

440

