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ABSTRACT

Relative Impulse Responses (ReIRs) have several applications in
speech enhancement, noise suppression and source localization for
multi-channel speech processing in reverberant environments. Noise
is usually assumed to be white Gaussian during the estimation of
the ReIR between two microphones. We show that the noise in this
system identification problem is instead dependent upon the micro-
phone measurements and the ReIR itself. We then present modifica-
tions that incorporate this new noise model into three prevalent meth-
ods: Least Squares, Non-Stationary Frequency Domain and Sparse
Bayesian Learning based approaches. We demonstrated improve-
ments with an experimental study using real-world measurements in
various noise environments.

Index Terms— Relative Impulse Response, Speech Enhance-
ment, System Identification, Sparse Estimation

1. INTRODUCTION

Relative Impulse Responses (ReIRs) and their frequency-domain
counterparts, the Relative Transfer Functions (RTFs) [1], are im-
portant tools in several multichannel audio processing tasks such as
noise reduction, speech enhancement and source localization [2, 3].
ReIRs represent the impulse response between two microphones cal-
culated when signals are received from a single source on both. RTF
information can be incorporated into beamforming algorithms [2, 4]
to produce a noise reference signal used for adaptive interference
cancellation and to improve the speech enhancement performance.
A solution to the Time Difference of Arrival estimation problem [5]
in reverberant environments can also be found using ReIRs. Fast,
accurate estimates of the ReIR are desired for optimal and reliable
real-time performance for these applications.

ReIRs can be easily computed in a noise-free environment using
a traditional Least Squares (LS) formulation as shown in [4]. In [1]
the authors have proposed a Frequency Domain (FD) method which
exploits the non-stationarity of the target speech signal. This method
assumes that the noise and the RTF are much less dynamic, when
compared to the target signal. A recently proposed time domain so-
lution, the Structured Sparse Bayesian Learning (S-SBL) algorithm
[6] exploits sparsity and the exponential decay in the ReIR during
estimation. In this method, sparse early reflections and an exponen-
tially decaying reverberation tail are modeled in a prior distribution
as part of an Empirical Bayes formulation.
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In the current state of the art ReIR estimation algorithms [1, 6],
the measurement noise is always assumed as a white Gaussian ran-
dom variable. Section 3 highlights how noise should actually be
characterized as a multivariate Gaussian distribution correlated with
both the measurements and the unknown estimate.

The effects of the improved noise characterization (Section 3)
suggest modifications to the Regularized Least Squares, Frequency
Domain methods and the S-SBL algorithm. The approach shown
below can be used as a framework for solving any system identifi-
cation problem where the noise is correlated to measurements and
the system itself. Attenuation Rate (ATR) and the Normalized Mean
Square Error (NMSE) have been used as performance metrics in this
work to show efficacy of this improved noise characterization for
ReIR estimation in different noisy environments.

2. PROBLEM FORMULATION

The ReIR estimation problem can be viewed as a system identifica-
tion problem. Consider a two channel noisy recording of a target
speaker (fixed position during duration of measurement) in a rever-
berant environment. Let hL and hR denote the Room Impulse Re-
sponse between the target and the two microphones (subscript indi-
cating Left (L) or Right (R) microphone). s[n] denotes the target
speech while εL[n] and εR[n] denote the noise components in the
microphone measurements xL[n] and xR[n] (Index n is dropped in
the analysis from now on). Given the exact acoustic channels, we
can obtain the ReIR h as hR ? h−1

L . However in practice; the system
identification problem is formulated as:

xR = hR ? s+ εR (1)
xL = hL ? s+ εL (2)

⇒ xR = xL ∗ h+ (εR − εL ∗ h)︸ ︷︷ ︸
ε

(3)

Note that the convolution operation can be replaced by a matrix
multiplication; thus mapping it to a linear inverse problem. xR and
xL areN×1 measurement vectors corresponding toN measurement
samples. The unknown ReIR h of length L (Truncated) is set as a
L × 1 vector. The N × L convolution matrix XL designed from
xL results in xR when multiplied with the estimate. We denote the
system noise (εR − εL ∗ h) as ε.

xR = XLh + ε (4)

This system may have a non-causal behavior. In order to
derive a causal ReIR, we delay xR by D samples such that the
ReIR is effectively delayed [7]. In the absence of noise, h =
x−1
L [n] ∗ xR[n] ∗ δ[n − D] = x−1

L [n] ∗ xR[n − D]. This delay is
achieved by zero-padding prior to the delayed signal xR[n−D].
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Most methods currently in use involve formulating the noise as
a white Gaussian random variable; i.e xR[n] ≈ (h?xL)[n]+ εG[n],
where εG[n] ∼ N (0, σ2). However; assuming that the measurement
noise εR and εL are i.i.d Gaussian random variables, ε is clearly not
white noise (Equation 3). Note that ε is colored irrespective of the
correlation between εR and εL. ε is observed to be correlated with
the measurements xR and xL; and also the unknown parameter h.

3. NOISE ANALYSIS

We motivate the need for an improved noise model by analyzing the
correlations between the noise and the signals. Rxy indicates the
correlation of the signal x with y. The measurement noise εR and εL
are modeled as i.i.d colored Gaussian variables with autocorrelation
RεRεR = RεLεL . The non-negative indices of the autocorrelation
sequence correspond to σ2[1, ρ1, ρ2, ρ3...]. We also assume that the
noise is independent of the received source signal.

Rεε[m] = E[ε[n+m]ε[m]] (5)

= E[(εR[n+m]−
∑
a

εL[a]h[n+m− a]) (6)

(εR[n]−
∑
b

εL[b]h[n− b])] (7)

= E [εR[n+m]εR[n]] (8)

+ E

[∑
a

εL[a]h[n+m− a]
∑
b

εL[b]h[n− b]

]
= RεRεR + σ2LRhh[m] (9)

+ σ2L

[
∞∑
i=1

ρi(Rhh[m− i] +Rhh[m+ i])

]
(10)

We can derive results similarly for RεxL and RεxR :

RεxL [m] = −h[m] ∗RεLεL (11)
RεxR [m] = RεRεR (12)

Rεε is not purely a delta function as we would expect if ε was
white Gaussian noise. The dependence of noise autocorrelation to
the ReIR itself allude to iterative methods where a previous estimate
is used to compute the next estimate. The later sections attempt to
weave in these modifications into existing methods. Modifications
to time-domain methods resulted in tedious expressions using the
above expressions. The formulation was simplified assuming that
the noise at each microphone is white (ρi = 0 ∀i). Note that ε is
colored even when εR and εL are white.

Rεε[m] = σ2 [δ[m] + LRhh[m]] (13)

RεxL [m] = −σ2h[m] (14)

RεxR [m] = σ2δ[m] (15)

We follow theoretical derivations with experimental results to study
the effects of the improved noise modeling.

4. MODIFIED METHODS

4.1. Modified Regularized Least Squares

A rudimentary solution to the ReIR estimation problem (assuming
White Gaussian noise) is a maximum likelihood solution obtained

using a Least Squares (LS) formulation:

ĥLS = arg min
h
‖xR −XLh‖22 (16)

The solution to Equation (16) is ĥLS = (XL
TXL)−1XT

LxR.
Possible ill-conditioning of (XL

TXL) is handled through regular-
ization [8]. A maximum likelihood based solution with improved
noise characterization (Section (3)) was however tedious to calcu-
late. We simplify the solution by assuming that the noise at each
microphone is white Gaussian (ρi = 0 ∀i). An iterative solution is
attempted instead; where a previous estimate ĥt is used to calculate
the next estimate ĥt+1 until convergence. The noise ε given ĥt is a
Gaussian N (0, σ2(I + RH)); where RH is a Toeplitz matrix with
the first column as LRhh (derived from results in Section 3). An
iterative LS solution can then be derived by maximizing:

p(xR|xL, ĥt;ht+1) ∼ N (XLht+1, σ
2(I +RHt)︸ ︷︷ ︸

Ct

) (17)

ĥt+1 is solved for as (XT
LC
−1
t XL)−1XT

LC
−1
t xR; where Ct is ob-

tained from ĥt as σ2(I + RHt). Two iterations were found to be
sufficient for convergence, beyond which no major performance gain
was observed.

4.2. Modified Non-Stationary Frequency Domain (NSFD)

Noise signals are assumed to be stationary and less dynamic when
compared to the target speech signal in the NSFD method [1]. The
measurement interval is first divided into P frames. Let ΦpAB(ω)
denote the cross power spectral density between signals A and B
during the pth frame. For the pth frame, we can write:

ΦpxRxL(ω) = H(ω)ΦpxLxL(ω) + ΦpεxL(ω) (18)

Since the noise is assumed to be stationary, the NSFD method
suggests that we can write ΦpεxL = ΦεxL . These overdetermined set
of equations are solved for p = 1, 2...P by a least squares formu-
lation, to estimate the RTF HRTF . The traditional NSFD method
implicitly assumes that ΦεxL remains constant. The improved noise
framework suggests that ΦεxL(ω) = −ΦεLεLH(ω), thus justifying
the assumption. The Modified NSFD equation for the the pth frame
can then be derived as:

ΦpxRxL(ω) = ΦpxLxL(ω)H(ω)− ΦεLεL(ω)H(ω) (19)

ΦpxRxL(ω) =
(
ΦpxLxL(ω)− ΦεLεL(ω)

)
H(ω) (20)

A possible method of implementation would involve estimating
the noise power spectrum during speech-free blocks and estimate the
accurate ReIR using the modified NSFD method. On simplifying the
formulation by assuming white Gaussian microphone noise:

ΦpxRxL(ω) =
(
ΦpxLxL(ω)− σ2)H(ω) (21)

The noise variance σ2 behaves as a Frequency Domain Re-
gaularizer. This regularization leads to the ReIR peaks being slightly
suppressed; along with lower noise-like fluctuations. Setting σ2 to
zero (No Regularization) averages out the Traditional Frequency
Domain (FD) [1] solution obtained from the blocks. Frequency
Domain methods however were observed to be more sensitive to the
noise characterization and thus assuming a flat noise power spectrum
(original methods) is not precise. However; such an approximation
in low noise environments may not lead to large performance losses.
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4.3. Modified Structured Sparse Bayesian Learning Method

The Empirical Bayes based method can be used to estimate the ReIR
in time domain by exploiting both its structure and sparsity. Both
the sparse early reflections and the reverberant tails are modeled in
a unified Bayesian framework as a prior. This formulation is a di-
rect modification of the original Structured Sparse Bayesian Learn-
ing (S-SBL) algorithm [6] with a noise component dependent on
the previous channel estimate. The algorithm below is iteratively
run to calculate this component and update the estimate with an-
other round of Modified S-SBL. We again make the simplifying as-
sumption of white microphone noise. Consider the system model,
xR = XLh+ ε. The modified Gaussian Likelihood assumption can
be shown to be p(xR|h, ĥ) ∼ N(XLh, σ

2(I+RĤ)). We envisage
an iterative approach where a previous estimate can be used for the
next estimate. The prior over h is proposed as:

p(h|γi, c1, c2) ∼ N(0,Γ) (22)

Γ = diag
[
γ1, ., γP , c1e

−c2 , .., c1e
−c2M

]
(23)

γp is a prior that corresponds to pth early reflection; whereas
c1e
−c2m corresponds to the mth tap out of the M -sample exponen-

tially decaying reverberant tail. Note that the proposed approach
follows a Relevance Vector Machine (RVM)/Sparse Bayesian Learn-
ing (SBL) [9] framework to incorporate the sparse regularization.
A Type-II Likelihood/Evidence maximization [10, 11] procedure is
used to estimate the Impulse Response, h. The hyper-parameters γi
(i=1,..,P), c1, and c2, are estimated from the data by maximizing the
marginal likelihood p(x|γi, c1, c2). The estimate of the ReIR given
the hyperparameters is then:

ĥ = E[h|xR, γ̂i, ĉ1, ĉ2] (24)

Let Π denote the covariance of the zero mean Gaussian measure-
ment noise (modified formulation). Π is obtained as σ2(I + RH).
Given the Gaussianity of the prior, the relevant posterior of h can be
computed as:

p(h|xR; γ, c1, c2) ∼ N(h;µ,Σ) (25)

µ = ΣXL
TΠ−1xR; Σ = (XL

TΠ−1XL + Γ−1)−1 (26)

We approximate the true posterior p(h|x) by p(h|x; γ, c1, c2);
a Gaussian distribution whose mean and covariance depend upon
the estimated hyperparameters. Following equation (24), we can use
ĥ = µ as the point estimate of the impulse response. The EM al-
gorithm is then used to estimate the hyperparameters from the log-
likelihood:

Q(γ, c1, c2, σ
2)

= Eh|xR;γt,ct1,c
t
2,σ

2 [log(p(xR|h;σ2)p(h|γ, c1, c2))]
(27)

Maximizing this Q-function with respect to the hyperparameters
γ, c1, c2 and σ2 [6] results in:

γt+1
p = Σt(p,p) + (µtp)

2 for p = 1 . . . P (28)

ct+1
1 =

1

M

M∑
m=1

ec
t
2m
(
Σtii + (µti)

2) (29)

M∑
m=1

mec
t+1
2 m < h2

m+P > −ct+1
1

M(M + 1)

2
= 0 (30)

(σ2)t+1 =
(xR −XLh)T (I +RH)−1(xR −XLh)

N

+
σ−2∑(M+P )

i=1

(
1− Σtii/Γ

t
i

)
N

(31)

The hyperparameters are updated; and the prior mean and co-
variances are computed until convergence. The final estimate is set
as µ = σ−2ΣXL

TΠ−1xR. It can be envisaged that once initial
estimates are found through alternative methods; the final pruned
solution is obtained through a few iterations of the Modified S-SBL.

4.4. Additional Considerations

The effect of the modified approaches on Time-Domain methods
(Section 4.1, 4.3) effectively lead to off-diagonal terms in the noise
covariance matrix. We also observe that the matrix is concentrated
diagonally; with the correlations far away from the diagonal close to
zero due to a decayingRhh. A pure white Gaussian noise characteri-
zation as used till now discards these off diagonal terms. Neglecting
these terms will lead to simpler computation at the cost of perfor-
mance. The simplification can also be justified for use in low noise
environments. These Improved Noise methods may be run a few
iterations given an previous estimate to enhance it.

5. EXPERIMENTAL EVALUATION

We use real-world noise-free speech signals measured in reverberant
environments (Experimental setting described in [12] and reverber-
ant recordings generated using measured impulse responses from
[13]); combined with different types of noise to evaluate perfor-
mance. The signal for the target source, a female utterance, has
been taken from the task of the online Signal Separation Campaign
(SISEC) 2013 [14]. A testing utterance (female talker) 10s long,
is divided into intervals of 1024 samples each (128 ms long at 8
kHz). The noise-free speech is combined with different kinds of
noise (Ambient Noise (Road), Omni-babble, Directional Machine
Noise). The evaluated performance measures are averaged over
these intervals.

Two performance metrics are considered here: the Attenuation
Rate (ATR) and Normalized Mean Squared Error (NMSE) [6]. The
ATR can be evaluated as the ratio between SNRout and SNRin in
dB scale, where:

SNRin =

∑
i=L,R

∑
n[hi ? s[n]]2∑

i=L,R

∑
n[εi[n]]2

(32)

SNRout =

∑
n[(ĥ ? xL)[n]− xR[n]]2∑
n[(ĥ ? εL)[n]− εR[n]]2

(33)

The numerator of SNRout measures the leakage of the target
signal whereas the denominator measures the attenuation of the
noise signal. A low ATR indicates a good noise reference signal for
further processing.

The NMSE measures the normalized square mismatch between
the True ReIR and estimated ReIR. The least squares method was
used to estimate the true ReIR using a long noise free measurement.
Lower NMSE is often an indicator of better signal recovery.

NMSE =
||ĥ− htrue||22
||htrue||22

(34)
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We evaluate experimental results using performance metrics dis-
cussed above. The results are shown in Table 1 and 2 for Least
Squares, Table 3 and 4 for NSFD, and Table 5 and 6 for S-SBL re-
spectively. The ATR (Table 1,3,5) and NMSE (Table 2,4,6) suggest
that the proposed improved noise characterization consistently helps
to improve the ATR and NMSE performance.

Table 1: ATR: Regularized Least Squares Method

Algorithms Ambient Noise (Road) Babble Noise Machine Noise

ATR (dB) ATR (dB) ATR (dB)

Least Squares -12.38 -4.80 -14.27

Least Squares (Improved Noise) -13.46 -5.63 -14.60

Table 2: NMSE: Regularized Least Squares Method

Algorithms Ambient Noise (Road) Babble Noise Machine Noise

NMSE NMSE NMSE

Least Squares 2.32 1.26 2.00

Least Squares (Improved Noise) 1.19 0.79 0.97

Table 3: ATR: Frequency Domain Methods

Algorithms Ambient Noise (Road) Babble Noise Machine Noise

ATR (dB) ATR (dB) ATR (dB)

FD -13.26 -3.10 -18.46

NSFD -17.06 -6.34 -21.92

Improved Noise NSFD -17.86 -6.45 -22.77

Improved Noise NSFD (σ2 = 0) -17.94 -6.65 -22.84

Table 4: NMSE: Frequency Domain Methods

Algorithms Ambient Noise (Road) Babble Noise Machine Noise

NMSE NMSE NMSE

FD 1.49 1.07 1.10

NSFD 1.37 0.79 0.72

Improved Noise NSFD 1.21 0.80 0.56

Improved Noise NSFD (σ2 = 0) 1.07 0.57 0.46

Table 5: ATR: S-SBL

Algorithms Ambient Noise (Road) Babble Noise Machine Noise

ATR (dB) ATR (dB) ATR (dB)

S-SBL -16.40 -7.11 -18.77

Improved Noise S-SBL -16.62 -7.56 -20.23

Table 6: NMSE: S-SBL

Algorithms Ambient Noise (Road) Babble Noise Machine Noise

NMSE NMSE NMSE

S-SBL 1.38 0.79 0.91

Improved Noise S-SBL 1.06 0.48 0.38

In addition, the Improved Noise S-SBL leads to additional spar-
sity in the estimate as seen in Fig.1. Such a solution will be of
relevance for Time Difference of Arrival estimation in reverberant
environments using ReIRs [5] since the iterative sparse regulariza-
tion leads to increased prominence of the peaks.

Improved noise methods can be utilized to improve solutions
after an initial estimate is computed using regular noise models.
The algorithm can be iterated until desired performance levels are
achieved. Fig.2 shows the performance variation with iteration for
the Improved S-SBL algorithm when the initial estimate is given
through the regular S-SBL algorithm.

Fig. 1: Increased Sparsity with Improved Noise S-SBL

Fig. 2: Algorithm Performance with Iteration

6. CONCLUSION

We formulated an accurate characterization of the noise in the ReIR
estimation process. The modifications to existing methods were also
studied and the performance gains were evaluated. An improved
system identification method when the noise is correlated with mea-
surements and observations was studied using iterative algorithms.
We also rationalized current methods as an approximation to the ex-
act noise characterization.

414



7. REFERENCES

[1] Sharon Gannot, David Burshtein, and Ehud Weinstein, “Sig-
nal enhancement using beamforming and nonstationarity with
applications to speech,” Signal Processing, IEEE Transactions
on, vol. 49, no. 8, pp. 1614–1626, 2001.

[2] Sharon Gannot and Israel Cohen, “Speech enhancement based
on the general transfer function generalized sidelobe cancella-
tion and postfiltering,” Speech and Audio Processing, IEEE
Transactions on, vol. 12, no. 6, pp. 561–571, 2004.

[3] Bracha Laufer, Ronen Talmon, and Sharon Gannot, “Relative
transfer function modeling for supervised source localization,”
in Applications of Signal Processing to Audio and Acoustics
(WASPAA), 2013 IEEE Workshop on. IEEE, 2013, pp. 1–4.

[4] Alexander Krueger, Ernst Warsitz, and Reinhold Haeb-
Umbach, “Speech enhancement with a GSC-like structure em-
ploying eigenvector-based transfer function ratios estimation,”
Audio, Speech, and Language Processing, IEEE Transactions
on, vol. 19, no. 1, pp. 206–219, 2011.

[5] Tsvi G. Dvorkind and Sharon Gannot, “Time difference of
arrival estimation of speech source in a noisy and reverberant
environment,” Elsevier Signal Process., vol. 85, no. 1, pp. 177–
204, 2005.

[6] Ritwik Giri, Bhaskar D Rao, Fred Mustiere, and Tao Zhang,
“Dynamic relative impulse response estimation using struc-
tured sparse bayesian learning,” in 2016 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2016, pp. 514–518.

[7] Zbynek Koldovsky, Petr Tichavsky, and David Botka, “Noise
reduction in dual-microphone mobile phones using a bank of
pre-measured target-cancellation filters,” in Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE International
Conference on. IEEE, 2013, pp. 679–683.

[8] Donald W Marquardt and Ronald D Snee, “Ridge regression in
practice,” The American Statistician, vol. 29, no. 1, pp. 3–20,
1975.

[9] Michael E Tipping, “Sparse Bayesian learning and the rele-
vance vector machine,” The journal of machine learning re-
search, vol. 1, pp. 211–244, 2001.

[10] Ritwik Giri and Bhaskar Rao, “Type I and type II Bayesian
methods for sparse signal recovery using scale mixtures,” IEEE
Transactions on Signal Processing, vol. 64, no. 13, pp. 3418–
3428, 2015.

[11] David P Wipf and Bhaskar D Rao, “Sparse Bayesian learning
for basis selection,” Signal Processing, IEEE Transactions on,
vol. 52, no. 8, pp. 2153–2164, 2004.

[12] Zbynek Koldovsky, Jiri Malek, and Sharon Gannot, “Spatial
source subtraction based on incomplete measurements of rel-
ative transfer function,” Audio, Speech, and Language Pro-
cessing, IEEE Transactions on, vol. 23, no. 8, pp. 1335–1347,
2015.

[13] Elior Hadad, Florian Heese, Peter Vary, and Sharon Gan-
not, “Multichannel audio database in various acoustic envi-
ronments,” in Acoustic Signal Enhancement (IWAENC), 2014
14th International Workshop on. IEEE, 2014, pp. 313–317.

[14] Nobutaka Ono, Zbynek Koldovsky, Shigeki Miyabe, and
Noboru Ito, “The 2013 signal separation evaluation cam-
paign,” in Machine Learning for Signal Processing (MLSP),
2013 IEEE International Workshop on. IEEE, 2013, pp. 1–6.

415


