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ABSTRACT

Research in static and time-variant system identification has brought
up a broad variety of identification algorithms. In acoustics, e.g., static
measurements of transfer functions are commonly conducted using
Inverse Cyclic Convolution (ICC) with Exponential Sweep excitation.
Identification and tracking of time-variant systems, however, often
employ adaptive filter algorithms, such as the Normalized Least Mean
Square (NLMS) algorithm. An interesting implementation variant
is the so-called Efficient NLMS (eNLMS) algorithm for arbitrary
periodic excitation. ICC and the eNLMS algorithm originate from
different fields and have so far evolved independently. This paper
bridges the gap using a theoretical analysis of both algorithms to
prove that they can be transferred into each other. This understanding
provides a joint perspective, such that know-how from both fields can
be combined to further optimize the system identification process.

Index Terms— Adaptive Filters, Efficient NLMS Algorithm,
Inverse Cyclic Convolution, Acoustic System Identification, Perfect
Sequences

1. INTRODUCTION

The problem to identify a linear system has been studied for many
decades and depending on the underlying application, many identifica-
tion methods have been proposed and optimized. The most common
one for acoustic measurements is the so-called Inverse Cyclic Con-
volution (ICC), which performs a block-wise deconvolution in the
frequency domain. This method is commonly used for static acoustic
measurements, e.g., of room impulse responses [1]. In this context,
many improvements of the identification algorithm have been pro-
posed, such as regularization or windowing. Also, the excitation
signal has been optimized, taking into account the characteristics of
the environment as well as the physical properties of the measurement
equipment. As a result, so-called Exponential Sweeps [2–5] are ap-
plied in acoustics nowadays, comprising a high Signal-to-Noise Ratio
(SNR), a low crest factor, and a certain robustness against non-linear
distortions, e.g., induced by loudspeakers.

A different, but related field of interest are digital signal pro-
cessing techniques for iterative system identification and tracking
of time-variant linear systems. Example applications are Acoustic
Echo Cancellation [6, 7] and Active Noise Control [8]. Typical adap-
tation algorithms are the Normalized Least Mean Square (NLMS)
algorithm, the Recursive Least Square (RLS) algorithm [9, 10] or
Kalman Filtering [11,12], enabling an efficient identification in every
time instant. Also, these algorithms have been improved over the
last decades, e.g., by sophisticated control mechanisms like adap-
tive step-sizes, preprocessing of the input signals and complexity
reduction [6, 10, 13].

In the context of fast measurements of time-variant linear sys-
tems, so-called Periodic Perfect Sequences (PPSEQ) [14] have been
introduced as optimal excitation signals for the NLMS algorithm [15].
This allows to track system changes over time iteratively. An imple-
mentation variant of the NLMS algorithm that is highly efficient for
block-wise processing has been proposed in [16].

One application of this method is the dynamic measurement
of individual Head-Related Transfer Functions (HRTFs) with high
spatial resolution [17, 18]. Originally, this task was regarded as a
static measurement problem and treated with ICC and Exponential
Sweep excitation [1, 3]. The different approaches, i.e., static and
dynamic measurement methods, have been considered separately due
to their different origins.

In [19], it has been shown that ICC, NLMS, and its variant [16]
for a step-size µ = 1 are mathematically equivalent for PPSEQ excita-
tion. Furthermore, in [20], an efficient implementation of the NLMS
algorithm also for non-PPSEQ excitation was presented, which is
called Efficient NLMS (eNLMS). It provides the same tracking capa-
bilities as a PPSEQ-excited NLMS algorithm.

The aim of this paper is to bridge the gap between both ap-
proaches by showing that the eNLMS algorithm and ICC are mathe-
matically equivalent also for arbitrary periodic excitation signals and
step-sizes. This provides a deeper understanding of the eNLMS algo-
rithm. Furthermore, it opens a joint perspective on both algorithms,
which opens the possibility to combine knowledge gained in both
fields. For example, adaptive step-size control, common for NLMS
algorithms, can be applied for ICC. Exponential Sweeps, a common
excitation for acoustic measurements, or regularization methods can
be used for tracking of time-variant systems with eNLMS.

The paper is structured as follows. First, the mathematical nota-
tion and properties of the involved operators and signals like PPSEQ
are introduced in Sec. 1.1 and 1.2. In Sec. 2, ICC and the eNLMS
algorithm from [20] are reviewed and analyzed. In Sec. 3, the algo-
rithmic equivalence is shown and complexity figures are discussed.

1.1. Notation and Preliminary Considerations
We consider a linear system, described by an FIR filter with the
impulse response coefficient vector at time instance n of length N
given by

h(n) = [h0(n), h1(n), . . . , hN−1(n)]T , (1)

with input x(n) and output d(n). Throughout this paper bold letters
define vectors or matrices and (·)T denotes the transpose operation.
With the input vector

x(n) = [x(n), x(n− 1), . . . , x(n−N + 1)]T (2)

containing the last N values of the real-valued input sequence x(n),
the output sequence can be calculated via the inner product

d(n) = hT (n) · x(n). (3)

406978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



The Discrete Fourier Transform (DFT) is defined for x(n), containing
previous input samples in reverse order, as

Xµ(n) =

N−1∑
k=0

e−j 2π
N
µkx(n− k), µ = 0, 1, . . . , N − 1 (4)

with frequency bin index µ. The DFT can be written in vector notation
as X(n) = [X0(n), X1(n), . . . XN−1(n)]T .
Introducing the N×N Discrete Fourier Transform matrix F with the
elements

fµk = e−j 2π
N
µk, 0 ≤ µ, k ≤ N − 1 (5)

in the µ-th row and k-th column, it holds that X(n) = Fx(n).
With the N ×N identity matrix I = [e0, e1, . . . , eN−1], where
ei, i = 0, 1, . . . , N − 1 denote the columns of I, the DFT matrix F
and its inverse F−1 can also be determined as

F = DFT{I}, F−1 = IDFT{I}, (6)

where the operators DFT{·} and IDFT{·} denote the column-wise
DFT and inverse DFT of a matrix. Also, the properties

F−1 =
1

N
F∗ =

1

N
FH (7)

hold, where (·)−1 denotes the matrix inverse, (·)∗ the conjugate and
(·)H the hermitian of a matrix. Note that a complex conjugation of F
corresponds to mirroring of the columns using the specific mirroring
matrix

Γ̄ =
[
e0, e(N−1), . . . , e1

]
. (8)

Then, F∗ can also be expressed as

F∗ = FΓ̄ (9)

For real-valued signals, the complex conjugation in the frequency
domain also corresponds to a mirroring operation in the time domain,
as can be verified by

x̄(n) = F−1 [Fx(n)]∗ = Γ̄x(n) (10)

with the mirrored sequence

x̄(n) = [x(n), x(n−N + 1), . . . , x(n− 1)]T . (11)

Similarly, a cyclic shift of a vector by n0 samples to the right can be
expressed using the time domain shifting matrix

Γ̆(n0) =
[
en0modN , e(1+n0)modN , . . . , e(N−1+n0)modN

]
,

such that the shifted vector x̆n0(n) can be expressed by a matrix
operation according to

x̆n0(n) = Γ̆(n0)x(n). (12)

This cyclic shift can also be written as cyclic convolution of x(n) with
the cyclically shifted unit impulse vector en0modN , since Γ̆(n0) is a
circulant matrix. The cyclic convolution is calculated by an element-
wise multiplication of the frequency domain vectors Fen0modN and
Fx(n). In this paper, the element-wise multiplication is expressed
by turning one of the vectors into a diagonal matrix, as in

Fx̆n0(n) = diag{Fen0modN}︸ ︷︷ ︸
Λ(n0)

Fx(n), (13)

where diag{·} describes the operation of putting the elements of a
vector onto the main diagonal of a square diagonal matrix. Λ(n0)
denotes a diagonal frequency domain shifting matrix. Accordingly,
the cyclic shift can be expressed using either a time or a frequency
domain shifting matrix

Fx̆n0(n)
(13)
= Λ(n0)Fx(n)

(12)
= FΓ̆(n0)x(n). (14)

1.2. Periodic Perfect Sequences (PPSEQ)
As the eNLMS is based on properties of the PPSEQs (e.g., [14]), they
will be reviewed briefly. A PPSEQ with period N is a signal p(n)
which has an impulse-like auto-correlation function

ϕpp(λ) =

N−1∑
n=0

p(n)p(n+ λ) =

{
Ep for λmodN = 0

0 otherwise.
(15)

Due to this property, for a given PPSEQ p(n) only N different mutu-
ally orthogonal vectors p0,p1, . . . ,pN−1 of length N occur with

pnmodN = p(n) = [p(n), p(n− 1), . . . , p(n−N + 1)]T . (16)

Alternatively, employing a time domain shifting matrix, we obtain

p(n) = Γ̆(n)p0. (17)

Due to (15) all vectors have the same energy pT (n)p(n) = Ep, ∀n
and an ideally flat magnitude spectrum. Thus, for the squared magni-
tude spectrum of a PPSEQ we obtain

diag{[Fp(n)]∗}diag{Fp(n)} = Ep · I, (18)

where the multiplication of diagonal matrices is used to express the
element-wise multiplication of the vectors. In order to obtain a real-
valued signal, the phase of a PPSEQ has to be anti-symmetric, but
apart from that it can be chosen arbitrarily. Therefore, several classes
of PPSEQs exist, e.g., pseudo-random noise sequences like Odd-
Perfect Sequences [21] and Ipatov Sequences [22] as well as Perfect
Sweeps [23].

2. SYSTEM IDENTIFICATION METHODS

For the actual system identification, a system model like in Fig. 1 has
to be considered.

x(n) h(n)

ĥ(n)

d(n) y(n)

d̂(n)

e(n)

v(n)

Fig. 1. Linear system with estimation path

The measured signal y(n) comprises the desired output signal d(n)
as well as a disturbance signal v(n). Both ICC and the eNLMS algo-
rithm from [20] aim to estimate the true impulse response coefficient
vector h(n) by ĥ(n) using only the known input sequence x(n) and
the measurable output y(n).

2.1. Inverse Cyclic Convolution (ICC)
ICC estimates the impulse response coefficient vector via element-
wise division of the DFT spectrum of the output sequence vector
y(n) = [y(n), y(n− 1), . . . , y(n−N + 1)]T by that of the input
sequence vector x(n), i.e.,

ĥICC(n) = F−1 [diag{Fx(n)}−1Fy(n)
]∗
. (19)

The complex conjugation is required to compensate for the mirroring
of the sequences x(n) and y(n) (cf. (10)). For the excitation signal,
we have to ensure that X(n) does not have any zero entries, as other-
wise the division cannot be performed. It should be noted that this is
no major restriction because in typical measurement applications the
excitation signal can be chosen accordingly.
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2.2. Efficient NLMS Algorithm (eNLMS) [20]

To introduce the eNLMS algorithm, first an alternative system descrip-
tion of the true impulse response coefficient vector h(n) is considered.
A transform domain is defined in which the true impulse response
coefficient vector h(n) is represented by a transformed coefficient
vector c(n) = [c0(n), c1(n), . . . , cN−1(n)]T . Second, the eNLMS
algorithm is summarized. In the new transform domain, it works like
a conventional NLMS algorithm, providing an estimate ĉ(n) for the
transformed coefficients c(n). An inverse transform of ĉ(n) yields
the desired impulse response vector estimate ĥ(n).

Alternative System Description

Following [20], every periodic sequence can be interpreted as the
result of a cyclic convolution of a PPSEQ p(n) of period N and a
zero-phase sequence s = [s(0), s(1), . . . , s(N − 1)]T , which can be
expressed in the frequency domain as

x(n) = F−1diag{Fs}Fp(n). (20)

Note that the PPSEQ contributes the complete phase of X(n) and a
constant scaling factor, whereas S only contributes to the magnitude
spectrum. Furthermore, the zero-phase property results in a real
spectrum S so that

[Fs]∗ = Fs, (21)

or equivalently Γ̄s = s. As in Sec. 2.1, we assume that X(n) has no
zero components. Then, it is possible to find a zero-phase sequence
g = [g(0), g(1), . . . , g(N − 1)]T such that the cyclic convolution
of s and g yields a unit impulse in the time domain or equivalently a
flat magnitude spectrum in the frequency domain

diag{Fs}diag{Fg} = I. (22)

The sequence g is now used as a pre-equalization of the perfect
sequence pi by a cyclic convolution according to

wi =
1

Ep
F−1diag{Fg}Fpi, i = 0, 1, . . . , N − 1. (23)

The new vectors wi define a non-orthogonal basis of RN and, by
construction, are orthogonal to x(n)

xTi wj =

{
1 for i = j

0 otherwise.
(24)

With the new basis vectors wi, the desired output of the system in
Fig. 1 can be calculated as

d(n)
(3)
=

N−1∑
i=0

hi(n)x(n− i) =

N−1∑
i=0

hi(n)eTi x(n)

=

N−1∑
i=0

ci(n)wT
i x(n) (25)

with the transformed filter coefficients ci(n), i = 0, 1, . . . , N − 1.
Using the vector c(n) of all transformed filter coefficients and taking
into account (24), eq. (25) can be rewritten as

d(n) = xTnmodN

[
w0,w1, . . . ,wN−1

]
c(n)

= eTnmodNc(n) = cnmodN (n). (26)

This means that d(n) corresponds to one of the filter coefficients as
premultiplying by eTnmodN extracts the (nmodN)-th coefficient of
c(n). Introducing an orthogonal permutation matrix

Γ(n) =
[
enmodN , e(n−1)modN , . . . , e(n−N+1)modN

]
, (27)

the vector d(n) = [d(n), d(n− 1), . . . , d(n−N + 1)]T contain-
ing the last N output values of the linear system, is given by

d(n) = ΓT (n)c(n). (28)

Thus, using the orthogonality ΓT (n)Γ(n) = I of the matrix,

c(n) = Γ(n)d(n). (29)

This corresponds to mirroring and subsequent cyclic shifting, i.e.,

Γ(n) = Γ̆(n) · Γ̄. (30)

Therefore, the vector of the filter coefficients is a cyclically shifted
version of the N previous output samples.

By comparing equation (3) and (25), the inverse transform can
be expressed by

h(n) =

N−1∑
i=0

ci(n)wi (31)

which describes a cyclic convolution of the basis vector w0 and
the coefficient vector c(n) and can therefore be calculated in the
frequency domain as

h(n) = F−1diag{Fw0}Fc(n). (32)

By inserting equation (29), the filter coefficients can be written as a
function of the output samples d(n),

h(n) = F−1diag{Fw0}FΓ(n)d(n). (33)

Adaptation Algorithm

The adaptation algorithm as described in [16, 20] estimates the trans-
formed coefficients c(n) of the unknown system model applying the
conventional NLMS adaptation

ĉ(n+ 1) = ĉ(n) + µ
(
y(n)− ĉT (n)enmodN

)
enmodN (34)

onto the estimated transformed impulse response coefficients ĉ(n)
with the scalar step-size µ. The transform domain is designed such
that a unit vector enmodN appears as excitation vector. Thus, in every
single time instant only one coefficient ci(n) is updated – key to the
efficiency of the eNLMS algorithm. For the special case µ = 1, (34)
becomes ĉ(n) = Γ(n)y(n) and the inverse transform (32) yields the
estimated impulse response vector

ĥµ=1
NLMS(n) = F−1diag{Fw0}FΓ(n)y(n). (35)

3. PROOF OF EQUIVALENCE

To prove that the eNLMS algorithm and ICC are equivalent, we first
conduct the proof for step-size µ = 1. Then, we illustrate that the
choice of a smaller step-size in the eNLMS algorithm leads to an
averaging process which can also be applied to ICC. Eventually, we
show that both methods exhibit similar computational complexity.
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3.1. Equivalence for Step-Size µ=1

For µ = 1, we must show the equality of ĥµ=1
NLMS(n) from (35) and

ĥICC(n) from (19), i.e.,

F−1diag{Fw0} · FΓ(n)y(n)
!
= F−1 [diag{Fx(n)}−1Fy(n)

]∗
.

Resolving the complex conjugation and premultiplying by F yields

diag{Fw0} · FΓ(n)y(n)
!
= diag{[Fx(n)]∗}−1F∗y(n).

By multiplying with Fdiag{[Fx(n)]∗} from the left, we now need
to show that

F diag{[Fx(n)]∗}diag{Fw0}︸ ︷︷ ︸
II

·FΓ(n)︸ ︷︷ ︸
I

y(n)
!
= FF∗y(n). (36)

According to (30), we replace Γ(n) in I . Then, we use the frequency
domain definitions of mirroring (9) and cyclic shifting (14) to rewrite

I = FΓ(n)
(30)
= FΓ̆(n)Γ̄

(14)
= Λ(n)FΓ̄

(9)
= Λ(n)F∗. (37)

For II , inserting the definitions of x(n) from (20) and w0 from (23)
yields

II = diag{[Fx(n)]∗}diag{Fw0}
(20)
= diag{[Fs]∗}diag{[Fp(n)]∗}diag{Fw0}
(23)
= diag{[Fs]∗}diag{[Fp(n)]∗}diag{Fg}diag{ 1

Ep
Fp0}.

As the order of multiplying diagonal matrices does not matter, this
can be rearranged and simplified using the zero-phase property (21)
and the relationship between s and g as defined in (22) to

II
(21)
= diag{Fs}diag{Fg}︸ ︷︷ ︸

(22)
= I

diag{[Fp(n)]∗}diag{ 1

Ep
Fp0}

=
1

Ep
diag{[Fp(n)]∗}diag{Fp0}. (38)

Note that in (38), the zero-phase component s has been compensated,
such that only the PPSEQ component remains. Since p(n) is a shifted
version of p0 according to (17), the frequency domain shifting matrix
(14) can also be used for Fp(n):

II
(17)
=

1

Ep
diag{

[
FΓ̆(n)p0

]∗
}diag{Fp0}

(14)
=

1

Ep
diag{[Λ(n)Fp0]∗}diag{Fp0}

= Λ(−n)
1

Ep
diag{[Fp0]∗}diag{Fp0}. (39)

Inserting the frequency domain definition of the autocorrelation prop-
erty of perfect sequences from (18) reveals that II describes a cyclic
shift in the frequency domain, i.e.,

II
(18)
= Λ(−n)

1

Ep
Ep · I = Λ(−n). (40)

Inserting I = Λ(n)F∗ from (37) and II = Λ(−n) from (40)
into (36) yields two cyclic shift operations compensating each other
according to the definition of Λ(n) in (13), so that

F ·Λ(−n) ·Λ(n)︸ ︷︷ ︸
=I

·F∗y(n) = F · F∗y(n) (41)

completes the proof.

3.2. Arbitrary Step-Size
Inspecting (34), we observe that in every single time instant only
one coefficient ci(n) is updated and thus, after N time instants each
coefficient of ĉ has been updated exactly once. By applying (34)
recursively (N − 1) times, the block-wise adaptation rule

ĉ(n+N) = ĉ(n) + µ(Γ(n+N−1)y(n+N−1)− ĉ(n)) (42)
= (1− µ) · ĉ(n) + µ · (Γ(n+N−1)y(n+N−1))

can be derived. This compact form is only achieved as in the trans-
form domain unit vectors appear as excitation, which compose Γ(n+
N−1). Inserting (42) in the inverse transform (32) yields

ĥ(n+N) =(1− µ) · ĥ(n) + µ· (43)

F−1diag{Fw0}F · Γ(n+N − 1)y(n+N − 1)︸ ︷︷ ︸
ĥ
µ=1
NLMS(n+N)

.

For 0 < µ < 1, (43) describes a block-wise recursive averaging
process of the impulse response estimates ĥµ=1

NLMS(n+N). It is well
understood that such an averaging allows to trade robustness against
disturbances for tracking performance, which is desirable for many
practical applications. As ĥµ=1

NLMS(n + N) = ĥICC(n + N), the
same averaging process can be applied to ICC with identical results.

3.3. Complexity
First, the complexity for µ = 1 is considered by comparing (35) and
(19). Both employ two DFT and one IDFT operations, which can be
efficiently performed using the Fast Fourier Transform (FFT). The
basis vector w0 in the eNLMS algorithm and the N possible input
vectors x(n) in ICC are constant, so that the FFT thereof needs to be
calculated and stored only once. Furthermore, in ICC the complex
divisions in (19) can be replaced by complex multiplications if the in-
verse of the input spectra is stored. Since the complex conjugation in
(19) compensates for the mirroring of x(n) and y(n), it can be omit-
ted if the signals are stored in reverse order. The multiplication with
Γ(n) in the eNLMS algorithm in (35) can be implemented likewise.
Hence, both methods exhibit the same computational complexity, as
N complex multiplications, one FFT, and one IFFT operation have
to be performed for each identification step.

For the general case with µ 6= 1, (34) can be interpreted as a
recursive averaging of ĉ. Therefore, one subtraction, addition, and
multiplication are needed in each time instant. The same result can
be achieved with ICC by averaging ĥ as shown in (43). Due to
the linearity of the DFT and the periodicity of the input sequence,
it can be shown that averaging ĥ reduces to averaging y (cf. (19)).
Thus, the eNLMS algorithm and ICC exhibit the same computational
complexity.

4. CONCLUSION

In this paper, we examined the Efficient NLMS algorithm (eNLMS,
[20]) and Inverse Cyclic Convolution (ICC) for arbitrary periodic
excitation. We have shown that both methods provide mathematically
equal results and complexity figures. The presented analysis im-
proves the understanding of the eNLMS algorithm and its interaction
with non-PPSEQ input, e.g., Exponential Sweeps. The joint perspec-
tive on both methods and classes of excitation signals bridges the
gap between ICC for static acoustic measurements and the eNLMS
algorithm for dynamic tracking.
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