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ABSTRACT

Spectral features are limited in modeling musical signals with
multiple concurrent pitches due to the challenge to suppress
the interference of the harmonic peaks from one pitch to an-
other. In this paper, we show that using multiple features rep-
resented in both the frequency and time domains with deep
learning modeling can reduce such interference. These fea-
tures are derived systematically from conventional pitch de-
tection functions that relate to one another through the dis-
crete Fourier transform and a nonlinear scaling function. Neu-
ral networks modeled with these features outperform state-of-
the-art methods while using less training data.

Index Terms— Automatic music transcription, cepstrum,
deep learning, convolutional neural networks.

1. INTRODUCTION

Automatic music transcription (AMT) is one of the most im-
portant tasks in music information retrieval (MIR) [1]. Re-
cently, increasing number of studies has incorporated deep
learning to this direction, such as vocal melody extraction
[2, 3] and multipitch estimation (MPE) [4–7], the latter one
being the main focus of this work. However, utilizing deep
learning in MPE is still a relatively new, and even a hard
topic, comparing to other widely-used techniques such as the
non-negative matrix factorization (NMF), sparse coding (SC)
and convolutional sparse coding (CSC) [8–10]. Those tech-
niques seek to decompose a spectrogram over a dictionary
with note-specific templates. Such a modeling strategy has
been prove successful, with recorded high performance on the
well-known MAPS dataset [11] under constraints of sparsity,
attack-decay pattern, and instrument type [9].

The challenges of using deep learning techniques in MPE
include: limited annotated data, heavy computation loading
for searching network hyperparameters, and the choice of
data representation (i.e., feature) [12]. The latest one, as
pointed out in [4], is an additional complication found only in
the audio domain, in contrast to other tasks in which only raw
input data suffice to give competitive performance. A system-
atic investigation in the same paper further demonstrated that

the performance of MPE is not only sensitive to the spectro-
gram type (i.e. linear-frequency scale, log-frequency-scale,
or constant-Q transform), but even sensitive to very basic
signal parameters such as sampling rate [4].

One way to mitigate this issue is to leverage multiple data
representations as the model input. For example, Böck et
al. employed multi-resolution short-time Fourier transforms
(STFTs) computed with different window sizes as the input
of a recurrent neural network [6]. Nam et al. also takes a
multi-resolution approach in the vocal melody extraction task,
while different resolution is in the model prediction rather
than the input representation [2]. Recently, Bittner et al. fur-
ther proposed the harmonic constant-Q transform (HCQT),
which combines multiple CQTs with different minimal fre-
quencies (fmin) to make the harmonic components of each
pitch being aligned across the input channels of a convolu-
tional neural network (CNN) [5]. These studies indicate that
multiple data representations are favorable in deep learning
modeling, which is highly flexible in combining data inputs
and in learning correlations among them.

It is worth noting that all of the above-mentioned stud-
ies use only spectral representations, such as spectrogram and
CQT, as the data representation; it is probably because such
representations are just what being utilized in other state-of-
the-art methods such as NMF and SC. However, a deep learn-
ing model should not be restricted in this way since it does
not perform signal decomposition. To explore more possi-
bility in deep learning, we may relax this restriction and re-
visit other pitch detection functions reported in the literature.
For example, the generalized cepstrum (GC), a lag-domain1

representation widely used in early feature-based MPE algo-
rithms [14–16], and the recently proposed generalized cep-
strum of spectrum (GCoS) [17, 18], as a generalization of the
autocorrelation of spectrum [19], can both be potential candi-
dates for being the input data representation.

This paper for the first time employs both frequency-
and time-domain data representations, including spectrum,
GC and GCoS, as the multi-channel input to a CNN. Incor-
porating the “combined frequency and periodicity” (CFP)

1The cepstrum is also referred to as a feature in the quefrency domain [13].
In practice, ‘quefrency,’ ‘lag’ and ‘time’ are with the same unit. Therefore,
these terms are used interchangeably in this paper.
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approach [20], one recently proposed feature based MPE ap-
proach into our discussion, we show that the above-mentioned
representations linked with a Fourier transform encompass
most of the conventional pitch salience function, and such
a multi-channel data representation can better enhance the
fundamental frequencies than using only spectral represen-
tations. Evaluation on a dataset with a comparable baseline
demonstrates the advantage of the proposed method.

2. DATA REPRESENTATION

2.1. The CFP approach

The CFP approach was firstly proposed in [20] for MPE of
polyphonic music. It is then extended to the de-shaped time-
frequency analysis, a general and rigorous theory representing
multi-component signals with oscillatory signals [21]. The
CFP approach holds the view that a pitch, as an object in
audio signals, cannot be described solely by the frequency
spectrum of the signal. Rather, it is described as a compos-
ite of frequency, periodicity, and harmonicity, implying that
both the time-domain and frequency-domain representations
are equally important [17, 18, 20, 22].

The basic assumption of the CFP approach is that the in-
formation of pitch tends to be the fast-varying part in every
of its data representation, while the slow-varying parts are ir-
relevant to pitch. For example, when a cepstrum is employed
as a pitch detector, we analyze only its high-quefrency coun-
terparts while discard its low-quefrency ones, since the low-
quefrency counterparts represents the spectral envelope rather
than pitch [23]. The CFP approach then argue that a pitch ob-
ject at frequency f0 and time t0 of a signal can be detected as
true by means of a time-frequency representation V (f, t), a
time-quefrency representation U(q, t), and the following con-
straints of harmonicity stating that

1. A sequence of prominent peaks are found at V (t0, f0),
V (t0, 2f0), . . ., V (t0,Mvf0).

2. A sequence of prominent peaks are found at U(t0, q0),
U(t0, 2q0), . . ., U(t0,Muq0).

3. f0 = 1/q0.
The constraints of harmonicity have been implemented with
a number of hand-crafted rules [20]. However, setting the
parameters such as Mv , Mu and the threshold parameters for
identifying peaks is rather ad-hoc. Therefore, in this paper we
consider a data-driven modeling approach that represents the
constraints of harmonicity in a neural network, by employing
V (f, t) and U(q, t) as input.

2.2. Data representation

Given an input signal x, a window function h, x,h ∈ RN ,
x := x[n] where n represents the time index, the amplitude

part of the short-time Fourier transform (STFT) of x is de-
fined as follows:

X[k, n] :=

∣∣∣∣∣
N−1∑
m=0

x[m+ nH]h[m]e−
j2πkm
N

∣∣∣∣∣ , (1)

This is also known as the square root of a spectrogram. Given
anN -point DFT matrix F, high-pass filters Wf and Wt, and
nonlinear activation functions σ, consider the followings:

Z0[k, n] := σ0 (WfX) , (2)

Z1[q, n] := σ1
(
WtF

−1Z0

)
, (3)

Z2[k, n] := σ2 (WfFZ1) . (4)

According to [17], Z0 is a power-scaled spectrogram, Z1

is a GC, and Z2 is a GCoS. Z0 and Z2 are time-frequency
representations indexed by frequency k and time n, while Z1

has a time and a quefrency dimension q since it is the inverse
DFT of a frequency-domain signal. The nonlinear function is
then a rectified and root-power function:

σi (Z) = |relu(Z)|γi , i = 0, 1, 2 , (5)

where 0 < γi ≤ 1, relu(·) represents a rectified linear unit,
and | · |γ0 is an element-wise root function. Wf and Wt are
two high-pass filters whose main purpose is to remove the
slow-varying part, i.e. the components in the low-frequency
or low-quefrency range. This can be done by setting Wf and
Wt to be diagonal matrices and defining the cutoff frequency
and quefrency, kc and qc, respectively:

Wf or t[l, l] =

{
1 , l > kc or qc ;
0 , otherwise . (6)

The discussion in [17] indicated that (2)-(4) parametrized
by γi encompass most of the pitch detection functions in the
literature. For example, when (γ0, γ1) = (2, 1), Z1 is known
as the autocorrelation function (ACF); when (γ0, γ1, γ2) =
(1, 2, 1), Z2 represents the ACF of spectrum, which has been
reported useful in resolving the missing fundamental effect in
a spectrum and reduce pitch detection errors [19]. Also notice
that many of the feature-based MPE methods are based on the
general form of Z1, the GC with γ1 between 0 and 1 [14–
16, 24]. When γ → 0, Z1 also approaches the conventional
cepstrum, a classic pitch salience function using the logarithm
function for nonlinearity [13,23]. The general form of Z2 has
also been investigated in the MPE task [17]. In summary, our
generalized representation makes sense since most of the the
well-known pitch detection approach are themselves related
to each other through Fourier duality and filtering.

To fit the perception scale of pitch, we map the above-
mentioned representations to the log-frequency scale. This is
done with a filterbank: Z0, Z1 and Z2 are all processed by
a filterbank with 275 triangular filters ranging from 20 Hz to
4 kHz with an interval of 36 bands per octave. The resulting
log-frequency features are called Ẑ0, Ẑ1 and Ẑ2 hereafter.
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Fig. 1. Data representations of Edvard Grieg’s Kobold, op.71,
no.3, from the 10th to the 25th second, selected from the ‘EN-
STDkAm’ subset in the MAPS dataset. From top to bottom:
power-scale spectrogram (Ẑ0), generalized cepstrum (Ẑ1),
and generalized cepstrum of spectrum (Ẑ2).

Fig. 1 illustrates the examples of Ẑ0, Ẑ1 and Ẑ2 of
a segment of piano solo. As seen, Ẑ0 has rich harmonic
components that make its energy almost concentrated in the
high-frequency range. On the contrary, the sub-harmonic
components in Ẑ1 make its energy concentrated in the low-
frequency range. In both cases, the true fundamental frequen-
cies are mostly of weak salience comparing to other compo-
nents, making the results sensitive to the interference from
the harmonic/sub-harmonic components and noise. Such an
issue is mitigated in Ẑ2 through the high-pass filter; the high-
frequency parts in Ẑ2 are suppressed so as to enhance those
weak fundamental frequencies in the low-frequency range.

3. MODEL

We consider a CNN and a DNN model in this paper. The
CNN model has two convolutional (CONV) layers followed
by three fully-connected (FC) layers. The CONV layers have
32 (5 × 3) filters and 32 (1 × 3) filters respectively. It means
that only the first layer covers multiple time steps, and the sec-
ond CONV layer only covers one time step. In other words,
for CNN we extend 2 more frames at both sides from current
frame, summing to 5 frames in total. Both CONV layers are
of varying dimensionality without padding. The number of
units of the four FC layers is [512, 512, 88]. Detail architec-
tures is shown in Table 1.

In the CNN architecture, each signal representation occu-
pies one channel; that is, for the setting where Z0 and Z1 are
combined, the input has two channels. In the DNN architec-
ture, multiple input representations are concatenated.

For both the CNN and DNN, we employ the recently pro-
posed scaled exponential linear units (SELU) as the activation

CNN DNN
Input 5 x 275 x # of channels Input 1 x 275 x # of channels
Conv 32 x 5 x 3 Dropout 0.25
Conv 32 x 1 x 3 Dense 512
MaxPool 1 x 2 Dropout 0.5
Dropout 0.5 Dense 512
Dense 512 Dropout 0.5
Dropout 0.5 Dense 88
Dense 512
Dropout 0.5
Dense 88
552408 parameters / channel 449112 parameters / channel

Table 1. Model architectures used in this paper.

function such that the network can be trained without batch
normalization [25]. To avoid over-fitting, we use dropout and
early-stopping. The initial network parameters are in Gaus-
sian distribution with zero mean and 0.05 std. The output is
an 88 × 1 binary-valued piano roll, where value 1 represents
pitch activation. Modeled by the sigmoid function, the output
layer is optimized by minimizing the binary cross-entropy of
the output and the ground truth. The output of the network
is a vector with the same dimension; the value of each bin is
the likelihood of the activation of the pitch, represented in the
range [0, 1], and a binary prediction is obtained from a thresh-
old at 0.5: yt = yt|yt[i]>0.5. We fit the model through Adam
optimizer with the initial learning rate set to 0.001. Detail of
the network is listed in Table 1.

4. EXPERIMENTS

The input signal is sampled at 44.1 kHz. The STFT is com-
puted with the Blackman-Harris window with 0.18-second
window size and 0.01-second hop size. The parameters of
the nonlinear functions are (γ0, γ1, γ2) = (0.24, 0.6, 1). The
feature extraction algorithm is implemented with MATLAB
2015b, and the deep learning algorithm is implemented with
Python 3.5.2. The deep learning architecture is based on
Keras with Tensorflow backend. The experiments is per-
formed on Ubuntu 16.04 with i7-6700K CPU, and there are
total 64GB of RAM. We use a GTX 1080 GPU for high-speed
processing. The companion source code of this paper can be
found at https://github.com/BreezeWhite/CFP_
NeuralNetwork for reproducibility.

4.1. Data and evaluation metrics

We evaluate the performance of the proposed methods on
the MAPS dataset, one of the most popular datasets in AMT
[11]. Since the dataset provides isolated notes for every piano
source, most of the previous studies focus on the transcription
of only one piano, given the single notes of the same piano as
training data [9]. On the contrary, only a few deep-learning-
based algorithms are evaluated on the full dataset [4, 6, 7]. In
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Data representation 60-sec training full training
CNN DNN CNN DNN

Ẑ0 (spectrum) 68.62 61.39 71.87 65.03
Ẑ1 (GC) 71.10 51.38 73.34 47.79
Ẑ2 (GCoS) 69.56 63.63 72.50 64.44
[Ẑ0, Ẑ1] 70.36 63.57 73.31 67.61
[Ẑ0, Ẑ2] 70.19 65.39 72.08 69.62
[Ẑ1, Ẑ2] 71.31 66.14 73.90 70.03
[Ẑ0, Ẑ1, Ẑ2] 70.26 66.72 72.63 70.08
[4] – – 70.60 65.15

Table 2. Results of Configuration II.

this work, we therefor adopt a cross-instrument train-test fold
partition used in [4,7], namely Configuration II, in which only
the 60 real piano recordings are used for testing, and other 210
synthetic piano recordings are used for training (180 record-
ings) and validation (30 recordings).

Apart from the cross-instrument evaluation, we are also
interested in how the proposed method behaves when the
training dataset is reduced. This is important for assessing
the potential of an AMT method being applied to the tran-
scription of low-resource data with limited labels. To this
end, we again adopt Configuration II, but only use the first 60
sec of each recording in the training set for model training.

For the evaluation process, we count the number of true
positives (TP), false positives (FP) and false negatives (FN)
over all the frames in a test fold and then calculate the micro-
average frame-level Precision (P), Recall (R), and F-score
(F): P = TP/(TP + FP), R = TP/(TP + FN), and F =
2PR/(P + R). A detected pitch is assumed to be a TP if
it is within a half semitone of the ground-truth pitch of that
frame. The average F-scores over all testing folds of different
experimental settings are then reported in Table 2.

4.2. Experimental Results

Table 2 lists the resulting F-scores of the proposed CNN and
DNN models. The left two columns list the results using the
first 60-sec segment of each clip in the train folds for training,
and the right two columns are those using full clips for train-
ing. At the outset, consider the first three rows showing the
results using mono-channel inputs. In the full-training case,
using Ẑ0 as the only input yields F-scores of 71.87% with
CNN, and 65.03% with DNN, both are on par with the base-
line results reported in [4], which also uses spectrum as the
input. For both training schemes, Ẑ1 and Ẑ2 both outperform
Ẑ0 with CNN, but Ẑ1 seems to be unsuitable with DNN; it
reaches only 51.38% and 47.79% F-scores, respectively. This
phenomenon is probably caused by the inharmonicity of pi-
ano. As the harmonic peaks of piano is not at exact integer
multiples of the fundamental frequency, in GC there are addi-
tional speckles around the true peaks representing the pitches.

Fig. 2. Transcribed piano rolls of the same segment in Fig.
1. From top to bottom: result using Ẑ0, result using [Ẑ1, Ẑ2],
and ground truth.

A CONV layer can better model such features than a FC layer
does since it can smooth the speckles nearby a true peak.

For the multi-channel data representations, the best re-
sult appears to be [Ẑ1, Ẑ2] with CNN. It achieves an F-score
of 73.90%, better than the baseline method in [4] by 3.3%.
When using 60-sec training, it still outperforms [4], with only
25% of the training time in the full-training case (i.e., 153s/ep
vs. 547s/ep). This implies that using the proposed multi-
channel features does improve the accuracy and computing
efficiency of the model. Also note that when using all the
three data representations, the result is not always better than
those using [Ẑ1, Ẑ2]. Specifically, using all features results in
the best performance for DNN, while using [Ẑ1, Ẑ2] is better
than using all features for CNN. This is also an evidence that
spectral features may not be the optimal data representation.

Fig. 2 shows examples of transcribed piano rolls using
on a challenging piano solo with a wide pitch range and fast
note groups, using Ẑ0 and [Ẑ1, Ẑ2] with CNN. Compared to
the ground-truth piano roll, the result using Ẑ0 has a large
number of upper-octave and lower-octave errors appearing as
false alarms. When employing [Ẑ1, Ẑ2] as input, these false
alarms are mostly eliminated.

5. CONCLUSION AND ACKNOWLEDGEMENT

In this paper, we advocate to leverage new data representa-
tions other than raw spectrum in MPE. The proposed multi-
channel CNN with CFP-based representations outperform
state-of-the-art methods on the piano transcription task. Such
an architecture will be scaled up for the transcription of other
instruments. By utilizing Fourier duality, features ‘deeper’
than the GCoS are also worth investigating in the future.
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