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ABSTRACT

In this paper, we propose a cover song identification algo-
rithm using a convolutional neural network (CNN). We first
train the CNN model to classify any non-/cover relationship,
by feeding a cross-similarity matrix that is generated from a
pair of songs as an input. Our main idea is to use the CNN
output–the cover-probabilities of one song to all other candi-
date songs–as a new representation vector for measuring the
distance between songs. Based on this, the present algorithm
searches cover songs by applying several ranking methods: 1.
sorting without using the representation vectors; 2. the cosine
distance between the representation vectors; and 3. the corre-
lation between the vectors. In our experiment, the proposed
algorithm significantly outperformed the algorithms used in
recent studies, by achieving a mean average precision (MAP)
of 93.18% in a dataset consisting of 3,300 cover-pairs and
496,200 non-cover-pairs.

Index Terms— Music Information Retrieval, Convolu-
tional Neural Network, Cover Song Identification, Cross-
similarity Matrix

1. INTRODUCTION

In music, cover songs include all kinds of songs which are
reproduced by musicians other than the original producer or
singer. These covers can share partial characteristics such as
melody and lyrics with the original song, but they can also in-
corporate different musical elements such as the instrument(s)
used, language of the lyrics, tempo, and key. The cover song
identification study was conducted to determine whether the
relationship between the two songs is covered or not, and to
help prevent any copyright problem on the original song.

Previous studies on cover song identification are catego-
rized by the information that is extracted from the song and
how this information is compared [1]. The information for
identifying the cover relationship is most often obtained by
using tools such as chroma features [2, 3] and HPCPs (har-
monic pitch class profiles) [4]. In addition, Euclidean dis-
tance, dynamic time warping(DTW), and SimPLe have been
used for measuring the similarity between the features [5, 6].

In this study, we used a cross-similarity matrix between
two chroma vectors as information for identification. From
this, we designed a CNN [7, 8] to estimate the cover-
probability of two songs. We used the probability values
obtained from our CNN to represent the vectors of each song
[9], and the cosine distance and correlation between them
to represent the degree of similarity. The overview of the
proposed system is shown in Fig. 1.

Fig. 1: System overview: a chroma vector is extracted from the au-
dio of each song. Using the cross-similarity matrix derived from two
chroma, the CNN outputs the cover-probability. Ranking is given
based on the computed cover-probability matrix.

The paper is structured as follows. Section 2 explains how
the cross-similarity matrix can identify certain characteristics
when a cover relationship exists between two songs. Section
3 describes the structure of CNNs and provide detailed infor-
mation on our proposed three models. Section 4 describes the
ranking method that defines the distance between two songs
with the probability values output from CNN, and computes
ranking. We will then show the process and result of extract-
ing the cover song identification performance index from the
results of the learned CNN, and our overall findings, in Sec-
tion 5. Finally, Section 6 will draw our conclusions.

2. CROSS-SIMILARITY MATRIX

To find the cover relationship between two songs, we have
to compare the sub-melody sequence. Previous studies [5]
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Table 1: Architecture of ConvNet-1: Inside the brackets are unit convolutional blocks, and outside the brackets is the number of stacked
blocks. Conv denotes a same convolution layer with stride = 1, and its inside parentheses is (channel×width×height). Maxpool denotes a
max-pooling layer with stride = 1, and its inside parentheses is (pooling size). ReLU, BN, FC(the number of weights), and DropOut(rate)
denote rectified linear unit activation function, batch normalization, fully-connected layer, and drop-out regularization, respectively.

Block # Input layer Block 1 Block 2 Block 3 Block 4 Block 5 Final layers

Compo-
nents -


Conv (32 × 5 ×5), ReLU
Conv (32 × 5 ×5), ReLU

Maxpool (2 × 2)
BN

× 1


Conv (32 × 3 ×3), ReLU
Conv (16 × 3 ×3), ReLU

Maxpool (2 × 2)
BN

× 4
DropOut1(0.5)
FC(256), ReLU
DropOut2(0.25)

FC(2)
softmax

Output (1, 180, 180) (32,90,90) (16,45,45) (16,22,22) (16,11,11) (16,5,5) (,,256) (,,2)

Table 2: Architecture of ConvNet-2: Inside the brackets are unit convolutional blocks, and outside the brackets is the number of stacked
blocks. Conv denotes a valid convolution layer with stride = 1, and we reuse the notations of Table 1.

Block # Input layer Block 1 Block 2 Block 3 Final layers

Compo-
nents -

{
Conv (16 × 3 ×3), ReLU

BN

}
× 2

Maxpool(2×2)

{
Conv (32 × 3 ×3), ReLU

BN

}
× 3

Maxpool(2×2)


Conv (48 × 3 ×3), ReLU
Conv (64 × 3 ×3), ReLU
Conv (80 × 3 ×3), ReLU
Conv (96 × 3 ×3), ReLU

× 1

Maxpool(2×2)

FC(1024), ReLU
DropOut3(0.5)
FC(200), ReLU
DropOut4(0.8)

FC(2)
softmax

Output (1,180,180) (16,176,176) (32,41,41) (96,16,16) (,,200) (,,2)

mainly used chroma vectors [10] for this purpose. The 12-d
chroma vectors extracted from the raw audio can represent
the energy for 12 semi-tones per unit time. Using this chroma
vectors, we compute a cross-similarity matrix to retrieve
information about the relationship between the two songs.
When extracting P and Q chroma vectors for song A and B
each, the cross-similarity matrix has a size of P × Q, and
the Euclidean distance between the corresponding column
and row chroma vector is input into each element. To avoid
the key modulation between the two songs, we set the keys
using an optimal transposition index (OTI) [11]. If the two
songs are in cover-relationship, they will contain sections
with similar melody lines. If the melody lines are similar,
the chroma vectors obtained therefrom also will show simi-
larities. Thus, in the cross-similarity matrix represented by
the distance between the chroma vectors, a diagonal shape is
consecutively formed, as shown in Fig. 2 (left). However,
if two songs are not in a cover relationship, the probability
that a similar melody lasts longer than a certain time is small,
and then, to find a diagonal component is difficult, as shown
in Fig. 2 (right). Based on this observations, we assume

Fig. 2: Example of cross-similarity matrices generated from cover
song pair(left) and non-cover song pair(right): a diagonal component
is found in the cross-similarity matrix extracted from the two songs
in the cover relationship.

that the use of a CNN to detect Characteristic shape would
be appropriate for identifying a cover relationship. Also, we
observed that most of popular music recordings had durations
of three to five minutes, and the first three minutes mostly
contains main melodies. Thus, we assumed that the first 180
s of each song could provide relevant information to identify
a cover song. Therefore, we used 180 seconds of each song
to train network, and if the song lasted for less than 180 s, the
duration of the song was standardized through zero-padding.

3. CNN FOR COVER SONG IDENTIFICATION

We build three types of CNNs for the cover song identifica-
tion using a cross-similarity matrix: ConvNet-1 in Table 1,
ConvNet-2 in Table 2, and ResNeXt [8]. These CNNs will be
trained to output [1,0] when the two pieces of chroma infor-
mation are similar, and [0,1] when they are not similar.

ConvNet-1 is a basic type of CNN with 10 convolutional
layers containing 0.58 × 106 parameters. It initially subsam-
ples the input with the filter size of 5 × 5; Convnet-2 is built
as wider than ConvNet-1. It contains 25.28× 106 parameters
with 9 convolutional layers. It initially subsamples the input
with the filter size of 3 × 3. Although these two CNNs have
different block-architectures, every block in both nets basi-
cally outputs one-half down-sampled size of the input. The
ResNeXt is an extended CNN that outperformed in the image
classification task of ILSVRC 2016. Our implementation of
ResNeXt followed the architecture and hyperparameters (car-
dinality = 32) presented in the paper [8].

4. RANKING METHOD

Assuming N songs, we can have N × N pairs of cross-
similarity matrices as an input to the CNNs described in Sec-
tion 3. Then, the output of CNNs produce a cover-probability
matrix P ∈ RN×N where Pi,j with i, j ∈ {1, 2, ..., N} is
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song index. Using P , we calculated the following ranking:

RMaxProb
i = sortdes(Pi,j for all j) (1)

RMaxProb
i ∈ R1×N is the ranking in which all the songs are ar-

ranged in order of probability of being in a cover relationship
with the ith song. RMaxProb

i can directly sort the values of Pi,j

for all j ∈ {1, 2, ..., N} in descending order.
Now we propose another ranking methods that use the

vectors derived from the P . If there were several songs sim-
ilar to query song in the dataset, they can have similar rep-
resentation vector components as the number of such songs.
Therefore, they can get more robust close distance to query
song when we use these kinds of ranking. We first repre-
sent the ith song with Pi,j for all j, and then compute rank-
ing based on the distance between the representation vectors.
The representation vector for ith song Pi,: ∈ R1×N consists
of the cover-probability values Pi,j for all j. That is, Pi,: has
the form [Pi,1, Pi,2, ..., Pi,N ]. Then, we define RMinCos

i as :

RMinCos
i = sortasc(distcos(Pi,:, Pj,:) for all j) (2)

where distcos returns the cosine distance [12] between two
vectors and sortasc returns the index of elements sorted in as-
cending order. Then, in Eq. (2), RMinCos

i computes the rank-
ings in ascending order of cosine distance from the represen-
tation vector of the ith song. Additionally, We can replace the
dist function in Eq. (2) with a correlation as :

RMinCorr
i = sortasc(distcorr(Pi,:, Pj,:) for all j) (3)

where distcorr is the correlation between two vectors [12].
Note that similar ranking methods can be found in pre-

vious studies [13, 14]. However, the present method differs
from them in that we use the probability output (of CNN) as
an element of the distance representation vector.

5. EVALUATION

5.1. Dataset

In Table 3, the train dataset consists of 1,175 songs: it has
2,113 cover pairs inside, and all other combinations are non-
cover. The test dataset consists of 1,000 songs, and it resem-
bles the dataset used in MIREX1: it has the same size with
the dataset used in MIREX, and larger than that used in [15].
Note that these songs were originally collected by Heo, et al
[14]. Of these, 30 kinds of 11 songs are covers of each other,
totaling 330 songs. The rest of the 670 songs consists of songs
that were not covered by any of the 1,000 songs except for
the song itself. Train & test sets are disjoint from each other:
there are no songs in both sets.

1http://www.music-ir.org/mirex/wiki/2016:Audio Cover Song Identification

Table 3: Dataset information

Dataset # cover # non-cover
Train 2 K 2,113 2,113

Train 30 K 2,113 30,000
Train 100 K 2,113 100,000
Validation 322 322

Test 3,300 496,200

5.2. Metrics

We used three metrics of the same type, as used in the MIREX
audio cover song identification task: MNIT10 represents the
average number of the songs that are true covers of the top ten
songs judged to be covers for each song. MAP(mean average
precision) is the average of the average precision values for
each query song. MR1(mean rank 1) is mean rank of the first
correctly identified as a cover.

5.3. Baseline algorithms

In the result of Section 5.4, DTW and SimPLe denote the
state-of-the-art metric learning-based algorithm for audio
cover song identification [14]. It takes the output of DTW or
SimPLe as an input feature. To directly compare the perfor-
mance of the present work with others, we used the baseline
algorithm implemented by the authors [14].

5.4. Results

In experiment, we had three types of CNN model as {ConvNet-
1, ConNet-2, ResNeXt}. Each of these CNNs was trained
with the training sets of different sizes as {2 K, 30 K, 100
K}: we increased only the size of non-cover examples for
investigating its effect on the cover song identification perfor-
mance. Thus, we trained nine CNN models in total: We used
Adam optimizer [16] with cross-entropy loss function [17],
and the validation accuracy of each model was in the range of
0.83–0.88. We then applied three different types of ranking
methods, proposed in section 4, to the output of each trained
CNN. Finally, we evaluated the results of two baselines and
27 proposed algorithms, as displayed in Table 4.

In Table 4, the best MNIT10 of 9.16 (larger is better)
and MAP of 0.93 were achieved by ConvNet-2+MinCorr
using the largest training set size of 100 K. Also, ConvNet-
1+MinCos and ConvNet-1+MinCorr trained with (training
set size of) 30 K, ResNeXt+MinCos and ResNext+MinCorr
trained with 100 K achieved the tie of best MAP. The best
MR1 of 1.96 (smaller is better) was achieved by ResNeXt+
MaxProb trained with 30 K. In comparison with the recent
metric learning-based algorithms (DTW+ML, SimPLe+ML),
all the proposed models trained with 30 K or 100 K consis-
tently outperformed as resulting up to 421 more number of
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Model Train set ranking
method

# correct
answer MNIT10 MAP MR1

DTW+ML - MinEuclid 2406 7.29 0.75 26.55
SimPLe+ML - 2602 7.88 0.81 15.05

ConvNet-1

2 K
MaxProb 2273 6.89 0.72 2.62
MinCos 1657 5.02 0.52 16.5
MinCorr 2090 6.33 0.67 8.67

30 K
MaxProb 2655 8.05 0.83 2.50
MinCos 3007 9.11 0.93 7.59
MinCorr 3022 9.16 0.93 4.80

100 K
MaxProb 2521 7.64 0.78 4.06
MinCos 2888 8.75 0.89 8.32
MinCorr 2911 8.82 0.90 10.7

ConvNet-2

2 K
MaxProb 1899 5.75 0.57 3.46
MinCos 1621 4.91 0.52 10.5
MinCorr 1852 5.61 0.60 8.01

30 K
MaxProb 2647 7.99 0.82 2.92
MinCos 2913 8.83 0.90 7.86
MinCorr 2941 8.91 0.91 5.93

100 K
MaxProb 2649 8.03 0.82 3.03
MinCos 3008 9.12 0.92 10.3
MinCorr 3023 9.16 0.93 7.01

ResNeXt

2 K
MaxProb 2525 7.65 0.77 2.90
MinCos 1561 4.73 0.50 20.9
MinCorr 1970 5.97 0.63 10.2

30 K
MaxProb 2607 7.90 0.81 3.03
MinCos 2955 8.95 0.91 3.26
MinCorr 2954 8.95 0.91 2.87

100 K
MaxProb 2705 8.20 0.84 1.96
MinCos 3013 9.13 0.93 5.41
MinCorr 3016 9.14 0.93 4.84

Table 4: Performance of cover song identification for baseline algo-
rithms(DTW+ML, SimPLe+ML) and proposed algorithms. DTW +
ML and SimPLe + ML are algorithms applying metric learning to
DTW and SimPLe output values, respectively [14].

correct classifications, out of 3,300 ground-truth: our best
result achieved 12.8 % point larger MNIT10, and 12% point
larger MAP over than the SimPLe+ML algorithm. For MR1,
the best performance was 15.05 in previous study, and it was
remarkable that ResNeXt+MaxProb trained with 100 K, it
could be lowered to 1.96. This revealed that the ground-truth
cover songs appeared inside top 1.96 rank in average.

The effect of increasing non-cover examples for training:
Overall, we could observe that the average MNIT10 and MAP
of the models were improving in proportion to the size of
non-cover examples for training, as shown in every case of
ConvNet-2 and ResNeXt. A few exceptional cases were ob-
served in the result of ConvNet-1, where the models trained
with 30 K showed better average performance over than that
trained with 100 K. In fact, ConvNet-1 had only 0.5 × 106

trainable parameters, while both ConvNet-2 and ResNext had
more than 25 × 106 parameters. In this respect, the lack of
network capacity could be thought as a plausible explanation
for the case of ConvNet-1.

The effect of using vector representation for ranking: For
the every model trained with 30 K or 100 K, we could ob-
serve that the average MNIT10 and MAP consistently im-
proved when the proposed vector representation with Min-
Cos or MinCorr was applied as a ranking method. In con-
trast, for the every model trained with 2 K, we could observe

that the result of MaxProb was consistently better than vector
representation-based ranking methods. One possible expla-
nation for this issue could be made as follows. If the models
were trained with 2 K, their output probabilities might not be
as reliable as that of 30 K or 100 K. The comparably smaller
MAP of the models with 2 K also reflects this. When us-
ing these lower-precision outputs as representation vectors,
the noisy elements could be more dominant in calculation of
rankings with cosine distance or correlation.

With respect to MR1, in contrast with MNIT10 and MAP,
the proposed ranking method without using representation
vector (MaxProb) outperformed over than other ranking
methods. We could explain this issue as follows: if we have
found only a small number of 10 covers for a query song,
since the MaxProb method assigns a rank to a song that is
determined to be cover even if it has small number, the MR1
is not greatly affected. However, if we use representation
vector, the cosine distance or correlation value between the
query song and the cover songs becomes relatively large, and
therefore, MR1 performance could be lowered.

6. CONCLUSIONS AND FUTURE WORK

We proposed a novel approach for the cover song identifica-
tion problem. Our prior observation was that the audio cover
song relationship could appear as a diagonal component in
the cross-similarity matrix. Based on this, we could train
the CNNs to classify the cover and non-cover pair of songs
by using the cross-similarity matrix as an image. Then, we
proposed a ranking method using the output probability of
the CNNs as a new representation vector for measuring the
distance between songs. In experiment, we implemented
three different types of CNNs: ConvNet-1, ConvNet-2, and
ResNeXt. Within the dataset consisting of 3,300 cover-pairs
and 496,200 non-cover-pairs of songs, the performance of
the presented CNNs with the direct ranking method on the
output probability was better than or comparable to that of
state-of-the-art. After applying the proposed ranking method,
we achieved 12 % point improvement of MAP over the di-
rect ranking method. Additionally, we analyzed the effect of
increased non-cover-examples in dataset for training, and the
effect of using vector representation for the ranking method.
Although this research showed promising results, we did not
provide an entire framework for the large-scale search of
cover songs. Future work will further investigate this issue.
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