
A PARALLEL FUSION APPROACH TO PIANO MUSIC TRANSCRIPTION BASED ON 
CONVOLUTIONAL NEURAL NETWORK 

 
Fu’ze Cong*, Shuchang Liu*, Li Guo* and Geraint A. Wiggins#,† 

 
*Beijing University of Posts and Telecommunications 

Key Lab of Universal Wireless Communications, Ministry of Education, Beijing, China 
# School of Electronic Engineering and Computer Science, Queen Mary University of London, UK 

† AI Lab, Department of Computer Science, Free University of Brussels, Belgium 
 

 
ABSTRACT 

 
In this paper, a supervised approach based on Convolutional 
Neural Networks (CNN) for polyphonic piano transcription 
is presented. The system consists of pitch detection model, 
onset/offset detection model, and note search model. The 
pitch detection model is a single-channel CNN predicting 
the probabilities of pitches contained in one frame of the 
audio. The onset/offset model based on dual-channel CNN 
is used for estimating the probabilities of each pitch’s onset 
or offset in a frame. The note search model is rule-based; it 
integrates the outputs of the pitch model and onset/offset 
model to determine the final onset, offset and pitch of notes 
in audio. Two experiments with different dataset conditions 
are accomplished to compare with state-of-the-art approach-
es on the same datasets. Experimental results reveal that the 
proposed approach preforms better in both frame- and note-
based metrics. 
 

Index Terms— Automatic music transcription, deep 
learning, convolutional neural network, note onset/offset 
detection. 
 

1. INTRODUCTION 
 
Automatic music transcription (AMT) is the process of gen-
erating some form of notation-like musical score from a 
given acoustic musical signal. Music transcription is consid-
ered to be a hard problem, in which human experts outper-
form current computational systems. However, polyphonic 
AMT is even more difficult because the combinatorially 
large output domain makes the modeling more complex. 
The AMT problem consists of several subtasks such as mul-
ti-pitch detection, note onset/offset detection, instrument 
recognition, extraction of rhythmic information, and so on 
[1]. In this paper, we concentrate on the multi-pitch detec-
tion and note onset/offset detection of polyphonic piano 
audio and try to extract the pitch, onset and offset of piano 
notes. 
       Many frame-based AMT system attempt to recognize 
pitches in each time frame, and search the onset and offset 

of per pitch according to the pitch estimation results. In 
pitch recognition, the most popular methods are based on 
spectrogram decomposition such as non-negative matrix 
factorization (NMF) [2-4], sparse decomposition [5] and 
probabilistic latent component analysis [6-7]. As an alterna-
tive, machine learning approaches which classify features 
extracted from frames to the output pitches are attracting 
increasing interest. Many classification models have been 
used to identify pitches in each independent frame, such as 
support vector machines (SVM) [8-9], deep belief networks 
(DBN) [10], recurrent neural networks (RNN) [11] and con-
volutional neural networks (CNN) [12]. The classification 
models achieve a higher frame-based F-measure but per-
form worse than spectrogram decomposition in onset detec-
tion. To generate note-level transcription results, there are 
several post-processing methods applied to determine note 
onsets and offsets. Hidden Markov models (HMM) [7] and 
hybrid RNNs [13] are used to model the relationship be-
tween frame-based outputs and provide a prior probability 
which can help generate note-level result. 
       The structure of the classical approach in the onset de-
tection task can be divided into an onset detection function 
(ODF) and peak picking function of the ODF [14]. Stasiak 
et al. [14] used deep neural network (DNN) to combine the 
outputs of several ODFs to high-level probability. Schlüter 
and Böck [15] applied CNNs to detect the edges of the spec-
trogram, which can be viewed as onsets of the notes and 
visualized each layer of the CNN. 

In order to improve the performance of a frame-based 
AMT system in note-based output, we attempt to integrate 
onset/offset detection model into the current AMT system. 
However, the current onset/offset detection method can only 
give the probability of an onset or offset. Therefore, it is 
hard to apply current onset/offset detect models to poly-
phonic AMT because of lack of pitch information. In order 
to solve this problem, we combine the convolution kernels 
of both pitch detection model [12] and onset detection mod-
el [15], and propose a dual-channel CNN model to estimate 
not only the onset/offset probability, but also to predict in 
which pitches there is an onset or offset. With the on-
set/offset probability of each pitch, the AMT system pro-
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posed performs better in both frame and note evaluation [12, 
16]. Additionally, in order to simulate the practical applica-
tion case, there are two patterns [7] to split the dataset. 

 

 
Fig. 1. Overview of the proposed system. The extracted 
features are fed to pitch, onset and offset detection models. 
The output about pitch, onset and offset are integrated by 
note search model to determine the final note events which 
are the results of transcription. 
 

2. METHOD 
 
The proposed AMT system can be divided into four parts: 
feature extraction; pitch detection; onset/offset detection; 
and note search. Fig. 1 shows an overview of the system. 
Firstly, frame-based spectrum features of the input piano 
audio are computed. Then several adjacent feature vectors 
are fed into pitch detection model and onset/offset model. 
The pitch detection model estimates the probability of each 
pitch contained in the frame. The onset/offset detector out-
puts the onset/offset probability of 88 pitches. The note 
search model combines the results of the models above, and 
determines the onset, offset time and pitch of each piano 
note which yields the completion of transcription. 
 
2.1 Feature Extraction 
 
The input piano audio files with 16-bit resolution at 44.1kHz 
sampling rate are transformed into a time-frequency repre-
sentation. Instead of short-time Fourier transform (STFT), 
we use constant Q transform (CQT) [17] to extract frequen-
cy features. This is because the result of CQT is in the log 
frequency axis and log-frequency which is linear in pitch 
domain is preferred over linear frequency. 

The audio data is down-sampled to 16kHz from 
44.1kHz and CQTs are calculated over 7 octaves with 36 
bins per octave. Every 1024 samples with Hamming win-
dow of audio are computed and the hop size is 512. The 
result of CQT is a 252-dimensional real vector with a frame 
rate of 31.25Hz. Then we combine 11 frames into one fea-
ture image as the input of CNN-based pitch model and on-
set/offset model. 
 
2.2 Pitch Detection Model 
 
CNNs are neural networks that use convolution instead of 
matrix multiplication in at least one of their layers [18]. 

CNNs are a specialized kind of neural network for pro-
cessing data that has a grid-like topology, such as image 
data with RGB channels, which can be thought of as three-
dimensional grid-like data. In convolutional layers, a set of 
weights called the convolution kernel are multiplied by part 
of input data with same shape. Results of the convolution 
kernel make up a feature map according to the position of 
the convolution data in the input tensor. There are also pool-
ing layers that simplify the feature map, and fully connected 
layers which handle with inputs by vector multiplication. 
 

 
Fig. 2. Architecture of CNN used in pitch detection model. 
Starting from a stack of two channels, convolutional layers 
and max-pooling layers in turn compute a set of 64 feature 
maps classified with fully connected layers. 
 

The structure of the CNN-based pitch detection model 
is showed in Fig. 2. The input of the model is (252, 11, 2) 
tensors standing for 11 frames of 2 channel piano audio. The 
output of the model is an 88-dimensional vector correspond-
ing to the probabilities of pitch in notes A0-C8 on a piano. 
The labels of the input features are 88-dimensional binary 
vectors standing for the pitches contained in the center 
frame (which is the 6th) of the input tensor. We choose the 
kernels with shapes 25x5 and 5x3, which have been shown 
perform better than others [12]. The motivation of the kernel 
structure design is that the pitch information depends on the 
CQTs which are the first dimension of input tensors (re-
sponding to 252); therefore, the convolution kernels are de-
signed to be tensors whose first dimension is bigger than the 
second in order to get more frequency features in one frame.  
 
2.3 Onset/offset Detection Model 
 
Compared with other deep learning models, CNNs are good 
at edge detection, because convolution is an effective way of 
describing changes by applying the same linear transfor-
mation of a small local region across the entire input [18]. 
Onset or offset events can be regarded as the vertical edges 
in the frequency spectrum, which CNNs can readily detect. 
Schlüter and Böck [15] applied CNNs to detect onset events 
in monophonic and polyphonic music. The result indicates 
that CNNs can achieve better recognition (higher F-measure) 
than the previous state-of-the-art.  
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Fig. 3. Structure of CNN-based onset/offset detection model.  
 

Compared with current onset/offset detection models 
[14, 15, 19] which only generate the onset time of notes, the 
model proposed in this paper detects both onset/offset and 
pitch information of notes. The architecture of the CNN-
based onset/offset detection model is showed in Fig. 3. The 
input tensors are the same as those of pitch detection model, 
that are the images composed by CQTs of 11 frames. There 
are two convolutional layers in parallel with different ker-
nels. The convolutional layers and max pooling layers in the 
upper part of Fig. 3 use the same kernels as those of pitch 
detection model, which extract features about pitches. How-
ever, the convolutional layers of the lower part have the 
wider kernels in contrast to those used for extracting pitch 
information. Since the second dimension of the input tensor 
stands for temporal features, wider kernels can detect differ-
ent levels of energy bursts in long or short-window spectro-
grams [15] which can then be used to estimate onset and 
offset probabilities. After the parallel convolution layers, 
fully connected layers synthesize the feature maps of pitch 
and onset/offset to obtain the final output which is an 88-
dimensional vector corresponding to the onset or offset 
probabilities of piano pitches from A0 to C8. 
 
2.4 Note Search Model 
 
Our proposed note search model is composed of two pro-
cesses: onset/offset searching and note searching. First, the 
most likely frames of onset/offset events are searched by 
algorithm. After that, the note search model uses the pitch 
probabilities and their onset offset point per pitch to deter-
mine the final onset and offset events of each note. The de-
tail of these two processes is as follows. 
 
2.4.1 Onset/offset Searching 
The results of onset/offset detection are fed to the on-
set/offset searching algorithm per pitch. For every pitch, 
there is the same approach to search onset and offset. Tak-
ing the onset search as an example, the probabilities of con-
tinuous temporal frames (which are the outputs of onset 
detection model) are filtered by a threshold (δ) to make bi-
nary results in each pitch. Then the centers of each succes-
sive positive frame are viewed as the time points of onset 
events, which are the outputs of onset searching. The result 
of note search model with different thresholds (δ) is showed 
in Fig. 4. 
 
2.4.2 Note Searching 

After determining the onset and offset in every pitch, we can 
ascertain the duration of the notes by using the probabilities 
of pitches in each frame. The detailed note searching algo-
rithm is as follows. In each pitch, the first offset event be-
tween two adjacent onset events will be searched and la-
beled as final offset event. If there is no offset event detect-
ed, we will find three continuous frames whose pitch proba-
bilities are less than 0.1 as the final offset event. 

 
Fig. 4. Frame- and note-based F-measures of note search 
model with different thresholds (δ) of onset/offset searching. 
Best results were achieved at thresholds between 0.05 and 
0.15. 
 

3. EVALUATION  
 
We use two F-measures to evaluate our proposed AMT sys-
tem, they are frame and note based [16]. The frame-based 
metrics sum the true positives, false positives and false neg-
atives of every frame. The note-based metrics are calculated 
similarly. Specifically, a note event is supposed to be cor-
rect when its pitch is right and the onset predicted is with in 
a 32ms range of ground truth onset. 
 
3.1 Dataset 
 
The models proposed are trained on the MAPS dataset, 
which consists of about 60 hours of audio recordings. There 
are 270 pieces of piano music with the corresponding 
ground truth MIDI transcriptions. There are nine categories 
of recordings corresponding to different piano types and 
recording conditions. Among the dataset, 60 pieces of piano 
music are played by real piano (Disklavier) and other 210 
are synthesized by software. To assess the proposed system 
in different usage scenarios, we designed two distinct exper-
imental conditions. In Condition I, all the audio files are 
randomly divided into 5 equivalent parts. 80 percent of the 
pieces are used in training, and 20 percent remained are 
used for testing. In the training dataset 26 tracks are selected 
for validation for determining the hyper-parameters. Both 
real and synthesis audio files are used in training and testing. 
       In Condition II, models are trained with 210 pieces of 
synthesis audio, and real piano recordings are used to evalu-
ate the performance of systems. The hyper-parameters are 
the same in both Conditions. We think that Condition II is 
more useful in practice, for, in real applications, the sound 
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of instruments is usually unknown and can not be used for 
training. As described in section 2.1, the CQTs are comput-
ed with 64ms window and 32ms hop. The size of the test 
data is about 480,000 frames. 
 

F-measure [%] for methods on datasets I and II 
Method Condition I Condition II    

 Frame       Note Frame       Note    
Vincent et al. [4]  59.78       69.00  59.60       59.12    
Sigtia et al. [12]  74.45       67.05  64.14       54.89    

Our Method  77.76       84.16  65.02       68.23    
 
Table 1. Top two rows show the results of NMF-based sys-
tem [4] and CRNN-based system [12]. System proposed 
achieves the best F-measure in both frame and note on da-
tasets of Condition I and Condition II.  
 
3.2 Training  
 
The CNN-based pitch detection model and onset/offset de-
tection model are trained by mini-batch gradient descent. 
The output layers of CNNs use a sigmoid activation func-
tion, and the cost function is sigmoid cross entropy. The 
labels for training are 88-dimensional vectors. For pitch 
detection models, if the frame is in the duration of one pitch, 
the relevant position in the vector will be labeled as true. 
Similarly, for onset/offset detection model, we label the 5 
closest spectrogram frames to one onset/offset event as true 
in the corresponding position of label vectors. As optimizer, 
Adam [20] is used because of its rapid convergence speed 
and less hyper-parameters. Number of convolution layers Lc 
� {1, 2, 3}, shape of kernels s � {(3, 5), (3, 7), (25, 3), (35, 
5)}, number of fully connected layers Lfc �  {2, 3} and 
number of hidden units in fully connected layers H � {512, 
1024, 2048} are tested for pitch onset and offset detection. 
Relu [21] is used as activation function of convolution lay-
ers and fully connected layers, and the dropout rate [22] of 
fully connected layers is 0.7. 
 
3.3 Results 
 
Table 1 summarizes the F-measures of our system and state-
of-the-art systems on the datasets of Conditions I and II. The 
new method proposed achieves higher frame and note based 
F-measures than the previous approaches. The frame-based 
F-measures of our system and the CNN-based system in [12] 
are similar, because the systems both use CNNs to detect 
pitch information, and the frame-based F-measure depends 
mostly on the performance of pitch detection model. How-
ever, the frame-based result of the system proposed is slight-
ly better, which indicates our onset/offset detection model 
can make better amendments to the pitch results than the 
RNN-based music language model of Sigtia et al. [12]. 
  

 
Fig. 5. Transcription result and ground truth for the first 30 
seconds of track MAPS_MUS-alb_esp2_AkPnCGdD. 
 

Additionally, it can be seen that the note-based F-
measure of the system proposed is higher than Vincent et 
al.’s NMF-based method [4], indicating that the CNN onset 
detection model can detect the onset events of every pitch 
with high accuracy, and performs better than method based 
on spectrogram decomposition which is usually regarded as 
more suitable in onset detection [12]. The proposed system 
trained in Condition II, also generates better transcription 
results than other systems. As expected, the performance of 
systems train on Condition II dataset are worse than that of 
Condition Fig. 5 is a graphical representation of the results 
of our AMT system trained in dataset mode I. The onset 
events of ground truth are mostly detected, while the dura-
tion of each note are usually shorter than the ground truth, 
because the energy of later parts of notes is relatively low. 
 

4. CONCLUSION 
 
In this paper, a novel AMT system for polyphonic piano 
music is introduced. The proposed system uses CNN-based 
onset/offset detection model which has two parallel convo-
lution layers with different kernels to detect the onset/offset 
events in each pitch, and rule-based note search model to 
combine the onset/offset events and pitch information. Sys-
tem proposed increases the transcription performance in 
both frame- and note-based evaluation. In contrast to a 
CRNN-based system [12] and an NMF-based system [4], 
our system improves performance of note-based evaluation, 
while maintaining the advantage of CNN-based model in 
frame-based evaluation, which we attribute to the high-
accuracy onset/offset detection model. 

In the future, more suitable machine learning methods 
will be tested in our note search model, to overcome the 
inflexibility of the current rule-based model. Additionally, 
other feature extracting methods will be used to increase the 
transcript accuracy in practice. 
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