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ABSTRACT 

In this paper, we design a novel deep learning based hybrid 
system for automatic chord recognition. Currently, there is a 
bottleneck in the amount of enough annotated data for 
training robust acoustic models, as hand annotating time-
synchronized chord labels requires professional musical 
skills and considerable labor. As a solution to this problem, 
we construct a large set of time synchronized MIDI-audio 
pairs, and use these data to train a Deep Residual Network 
(DRN) feature extractor, which can then estimate pitch class 
activations of real-world music audio recordings. Sequence 
classification and decoding are then performed with a trained 
Bidirectional LSTM and Conditional Random Fields (CRF) 
network. Experiments show that the proposed model is 
compatible for both regular major/minor triad chord 
classification and larger vocabulary chord recognition, the 
performance is good and no less than other state-of-the-art 
systems. The proposed system also achieved good evaluation 
score in MIREX 2017 Automatic Chord Estimation task. 

Index Terms— Automatic chord recognition, Deep 
residual network, Bidirectional long short term memory 
(BLSTM), Conditional random fields (CRF). 

1. INTRODUCTION 

Audio chord recognition is desired to automatically 
transcribe the time-synchronized chord label sequence that 
best describes the harmonic progression of a piece of musical 
audio data. It is a key factor of music content analysis and has 
been a long-lasting research theme in the Music Information 
Retrieval (MIR) community [10]. 

In the recent decade, with the rapid development of 
computing resources and training technique, deep learning 
has made a great success in various research fields like speech 
recognition, computer vision, and some MIR tasks. 
Regarding chord recognition, there has been a trend to move 
from traditional Chroma feature [17, 18] extraction plus 
shallow-level machine learning models [6, 9, 19] towards 
deep learning approaches. 

Chronologically, the first deep learning-based chord 
recognition system was proposed in [5], which tries to 
automatically extract harmonic feature with a trained 
Convolutional Neural Network (CNN). Following this, 
several works investigate automatic representation learning 
via deep learning methods, such as Deep Belief Network 
(DBN) [4] and Deep Neural Network (DNN) [3]. The latest 
work [2] designs a deep CNN for feature extraction and 

frame-wise classification, and uses CRF for post-filtering, 
which reaches the state-of-the-art chord recognition accuracy 
on the common datasets. 

Rather than learning the mappings between input 
spectrum and corresponding labels directly, some works have 
been seeking to obtain more explicit representations with 
neural networks [1, 16]. The idea of learning Chroma feature 
extraction with data-driven method was proposed in [1] and 
named as Deep Chroma Extractor. The neural network-based 
Chroma extractor learns the mappings between the input 
spectrum and ideal Chroma vector templates (derived from 
corresponding chord), with real-world audio recordings and 
hand-labelled chord information.  

A critical issue for all deep learning based methods is to 
collect and label enough high quality training data. Specific 
to the chord recognition field, annotating time-synchronized 
ground-truth chord labels is not only time consuming and 
tedious, but also needs professional music skills. This 
bottleneck has obstructed the further development of deep 
learning based chord recognition methods with big data as a 
prerequisite. 

In this paper, we turn to MIDI (Musical Instrument 
Digital Interface) formatted music data to overcome the 
shortcomings. First, we can easily collect much more training 
data because no additional annotation is needed. Second, the 
synthesized audio is strictly synchronized to MIDI note 
information, or in other words, its note-level annotation 
quality is guaranteed to be perfect. 

Based on this idea, we propose a novel chord recognition 
system with hybrid deep learning architecture. For feature 
extraction, we use a Deep Residual Network (DRN) to 
automatically learn and extract deep features characterizing 
the music content. Unlike other related works which are 
trained with limited error-prone labels manually marked from 
real-world music signals, here the DRN is trained with a large 
set of MIDI files and their synthesized audio signals. For 
sequence decoding, we employ a combination of 
Bidirectional Long Short Term Memory (BLSTM) network 
[7] and Conditional Random Fields (CRF) [13], which is 
adept in modeling time sequence. 

2. SYSTEM OVERVIEW 

The proposed chord recognition system includes three 
subsections, namely feature extractor, pattern matching and 
optimal label decoding. The acoustic features are first 
calculated by the DRN from the spectrogram of each music 
signal. Then the feature vectors are fed into the BLSTM 
network as a sequence, and a class likelihood vector is 
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calculated for each frame. Finally, the class likelihood 
sequence is input to the trained CRF to decode the optimal 
chord label sequence. 

3. FEATURE EXTRACTOR TRAINING 

This section describes the architecture of the proposed deep 
feature extractor and its training procedure. 

3.1. Input Preprocessing 

Each audio signal (synthesized from MIDI file) is first 
downsampled to 22,050 Hz and transformed into log-
frequency spectrogram representation via Constant-Q 
Transform [8], which is computed over 6 octaves with 24 bins 
per octave and 2048 samples of hop size. The magnitude 
spectrum is transformed into S୪୭ = ln(𝑆 + 𝜀) , where S 
represents the raw spectrogram and 𝜀 is a small number for 
avoiding zero value in log calculation. 

After that, we apply global mean-variance normalization 
on S୪୭  of a single track, to reduce the variance of overall 
spectral energy between different music pieces. 

Finally, the pre-processed CQT spectrogram is sent to the 
DRN feature extractor model as input vectors. 

3.2. Target Representation 

We train the neural network so that it can transform the above 
spectrogram S୬୭୰୫  into an ideal Chroma representation. 
Concretely, it tries to predict which of the 12 pitch classes are 
activated at a specific frame, just like what original Chroma 
vector extractor does. We transform note information of each 
MIDI file into a Chroma-like 12-dimension binary vector 
sequence that tells the pitch class activations of 
corresponding audio frames of the spectrogram. That is, if 
any MIDI note is active at a specific frame, the value of 
corresponding pitch class of the target vector of the frame is 
set to be 1. 

To obtain more information, we further add two feature 
vectors into the Chroma representation, i.e., bass note 
Chroma and top note Chroma. Each of them is a 12-
dimension one-hot (i.e., only one dimension of the vector is 
1 and all others are 0) vector that tells the pitch classes of the 
base note (the lowest active MIDI note) and the top active 
note (the highest active MIDI note). The lowest and highest 
notes are excluded in original pitch class activation 
calculation, so that the compressed vector represents the 
“middle notes” of the corresponding frame, which are often 
chord tones. The network is expected to predict the bass note, 
top note and other pitch class activations of the current frame 
simultaneously, as shown in Fig. 1. 

 

Fig. 1. MIDI note activation of a time frame is represented in 
three 12-dimension vectors, indicating current bass note, active 
pitch classes and top note. 

In this way, we get a 36-dimension deep acoustic feature 
for further classification. Compared with the Deep Chroma 
feature which construct target representation with chord 
annotations, the proposed feature representation is able to 
reflect more concrete information about active notes, and the 
dataset is far less error-prone and much easier to collect as 
well. 

3.3. Deep Residual Network 

Deep Residual Network is a feed-forward neural network 
with shortcut connections [14]. Its basic theory makes the 
network optimization easier, thus it is possible to construct 
much deeper neural networks with better performance. 

In our work, DRN is used for harmonic feature extraction. 
The network is constructed by stacking 5 layers, each layer 
has 512 units with tanh activation function. The output layer, 
activated with a sigmoid function, is intended to tell if each 
pitch class is activated (1.0) or not (0.0). 

3.4. Network Training 

The neural network is trained to minimize the mean-squared 
error between the network output and the target vectors. Fig. 
2 describes the overall structure of feature extractor training. 
The parameters are optimized using Stochastic Gradient 
Descent algorithm with learning rate of 0.01. 

For network training, we collected 210 MIDI files from 
RWC Classical, Jazz and Genres dataset [11], plus 900 MIDI 
files randomly selected from Lakh MIDI dataset [21]. That is 
1110 pieces of General MIDI format multitrack music data in 
total. We synthesized corresponding audio using Direct MIDI 
to MP3 Converter by Piston Software, with Chorium 
soundfont used as the sound source of the General MIDI 
instruments. 

 
Fig. 2. The training of DRN feature extractor with synthesized 
MIDI data. 

4. BLSTM-CRF SEQUENCE DECODING 

This section describes the BLSTM-CRF model for pattern 
matching and decoding chord sequence, given the feature 
sequence calculated by the DRN. BLSTM network performs 
pattern matching, and CRF infers the final label sequence. 

4.1. BLSTM Network 

We construct a Bi-directional LSTM network with a pair of 
forward and backward recurrent layers, 512 LSTM units on 
each layer. Instead of using RNN as “language model” as in 
previous works [3, 4], the Bi-directional LSTM network acts 
as a sequence classifier in our proposed model. It receives a 
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feature vector sequence calculated by the DRN, and outputs 
another 25-dimension vector sequence that represents the 
chord class likelihoods on each frame.  

To reduce overfitting in the training phase, we apply 
dropout operation [20] with probability 0.5 to the output of 
both LSTM layers. 

4.2. Conditional Random Fields 

Our model employs a linear-chain CRF, which has been 
widely used in various sequence labelling tasks. Its energy 
function is defined as, 

E(X, Y) = ∏ (𝑥௬
+ 𝑐௬షభ௬ )                     (1) 

where for frame i, 𝑥௬
 is the class likelihood of 𝑦  (calculated 

by the BLSTM network) and 𝑐௬షభ௬   is the label transition 
cost between label 𝑦ିଵ and 𝑦 . 

The CRF is trained by optimizing the label transition cost 
matrix c. Given an input sequence, the objective is to 
minimize the negative log-likelihood of the expected label 
sequence in light of Eq. (2), 

L = −൫∑ 𝑥௬୧ + ∑ 𝑐௬షభ௬ ୧ − ln(Z)൯             (2) 

where Z is the normalizing constant.  
At decoding phrase the model finds out the label sequence 

Y that maximizes the conditional probability  P(Y|X)  via 
Viterbi algorithm. 

4.3. Network Training 

In decoder training phase, the training dataset is composed of 
pairs of feature sequence (obtained from above feature 
extraction stage) and time-synchronized chord annotation 
data. As the decoder does not need to learn the dependency 
across the whole music, we choose to randomly take a 
sequence of a fixed length (128 frames, or about 10 seconds) 
each time to train the BLSTM-CRF model. 

The classifier (BLSTM) and the decoder (CRF) 
component is trained individually. First, the BLSTM network 
is trained with the output layer activated with softmax 
function, to classify the feature sequence by itself. After this 
training is finished, we fix the well-trained parameters of 
BLSTM and train the parameters of CRF with the same 
dataset. Parameters of both models are optimized using 
AdaDelta algorithm. 

5. LARGE VOCABULARY CHORD RECOGNITION 

In most chord recognition methods, including the proposed 
neural network architecture, the recognition process is seen 
as a quantization process that assigns all observations to 
corresponding one-of-K representations, built on the 
assumption that the 24 classes (major and minor triads) are 
mutually independent. However, if we add more complex 
chords (like seventh and inverted chords) into the vocabulary, 
this assumption no longer holds, because there exist chords 
related to each other hierarchically [15]. Some researches on 
large vocabulary chord recognition try to extract more 
detailed acoustic feature while follow the conventional flat 
classification framework. [9, 22].  

In practice, we generally estimate each chord in triad level 
first, and then determine whether it is seventh or more 
complex chord, based on the prior estimation. To mimic this 
process, we design a two-stage complex chord recognition 
method.  

Concretely, the proposed system does this by modifying 
qualities (major or minor triad) and inversion types of each 
recognized chord signature. Given a chord signature (major 
or minor triad, which is the estimation result of the BLSTM-
CRF network) and the feature sequence of corresponding 
time frame, we calculate the mathematical mean of the 
feature value along the dimension of its third, fifth, seventh 
and major-seventh note, and bass feature value of its root, 
third and fifth note. Then we determine its true quality and 
inversions with an explicit thresholding strategy as follows, 
1. If the mean value of the seventh or major-seventh note in 

middle feature is over 0.5, then change the chord quality 
to seventh (minor seventh) or major-seventh (depending 
on which value is bigger). 

2. If the mean value of the third or fifth note in bass feature 
is over 0.5 and bigger than that of the root note, then mark 
the chord as first or second inversion (depending on which 
value is bigger). 

In this way, the chord recognition system is able to support 
61 types of chords if considering only the seventh chords, and 
181 types of chords if taking chord inversions into account. 
At the same time, the recognition accuracy of triads is not 
affected. 

6. EXPERIMENTAL RESULTS 

In this section, we first describe the training and testing 
datasets and the evaluation metrics, then perform a series of 
quantitative experiments to comprehensively investigate the 
chord recognition accuracy under various conditions. 

6.1. Datasets and Evaluation Metrics 

We evaluate the proposed system on a compound dataset 
comprising the following two subsets. Isophonics: 180 songs 
by The Beatles, 19 songs by Queen, and 18 songs by Carole 
King. RWC pop: 100 Japanese and American style pop 
songs. We perform an 8-fold cross-validation on the dataset 
(in each fold the training data is used for training the BLSTM-
CRF part). Note that this dataset does not contain any song 
used in the training MIDI dataset. 

The commonly used evaluation measure in chord 
recognition is the Weighed Average Overlap Ratio (WAOR), 
which is computed in terms of Eq. (3), using the mir_eval 
library [12]: 

WAOR =
୲ౙ

୲
                                       (3) 

where t is the total overlap time between the annotated and 
estimated chord label sequences, and t is the total duration 
of annotated chord sequence. 

To evaluate the recognition performance in different chord 
vocabularies, the comparison is performed in the three 
metrics implemented in the library: Majmin, considers only 
major and minor triads, which is the most conventional 
comparison metric. Sevenths, considers seventh, minor-
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seventh, and major-seventh qualities in addition. Sevenths-
inv, considers triads, sevenths and chord inversions. The 
three metrics correspond to “majmin”, “sevenths”, “sevenths-
inv” metric in MIREX competition. 

6.2. Results and discussions 

Below we compare our method with other state-of-the-art 
baseline systems in terms of major/minor chords and complex 
chords under the two public datasets. Furthermore, we 
investigate the influence of deep feature extraction and MIDI 
training dataset size on the system performance. 

6.2.1. Evaluation of Major and Minor Triads Recognition 

To evaluate the system performance of recognizing triads, we 
do the same 8-fold evaluation on different chord recognition 
systems, i.e., Chordino algorithm [6], the CNN-CRF system 
[2], the CJK-BLSTM system [22], and the proposed system 
(denoted as MF-BLSTM-CRF). 

Besides the proposed MF-BLSTM-CRF system, we also 
evaluate its two alternatives to observe the effect of deep 
feature extraction. One is denoted as BLSTM-CRF, where the 
DRN is removed and the BLSTM-CRF decoder is trained to 
directly classify raw CQT spectrum sequences. The other is 
denoted as DC-BLSTM-CRF, where the DRN extractor is 
replaced with another neural network of the same architecture, 
but trained in the way as Deep Chroma Extractor (with raw 
audio-chord annotation pairs) [1]. 

Table 1. WAOR under majmin metric 

 Iso RWC 
Chordino 76.4% 74.8% 
CNN-CRF 83.2% 79.9% 
CJK-BLSTM 72.6% X 
BLSTM-CRF 83.1% 79.2% 
DC-BLSTM-CRF 83.0% 79.1% 
MF-BLSTM-CRF 84.1% 80.8% 

The last three rows of Table 1 indicate that MF-BLSTM-
CRF performed better than its two variants BLSTM-CRF and 
DC-BLSTM-CRF on both the Isophonics dataset and the 
RWC dataset, the improvements are all over 1%, which again 
verifies the effectiveness of the proposed 36-dimension deep 
feature since the decoding modules (BLSTM-CRF part) are 
the same.  

Compared with the three baseline systems, MF-BLSTM-
CRF shows slightly better performance than CNN-CRF 
system. By contrast, it significantly outperforms Chordino 
and CJKU-BLSTM system. Note that CJKU-BLSTM has no 
experimental results reported on the RWC dataset. 

6.2.2 Evaluation of Complex Chords Recognition 

We show the estimation accuracy of complex chords in Table 
2. By comparing Table 1 and Table 2, an obvious downward 
tendency can be observed with the increasing of chords types. 
In Table 2, MF-BLSTM-CRF is apparently superior to other 
baseline systems in terms of Sevenths and Sevenths-inv 
metrics. 
 
 

Table 2. WAOR under complex chord metrics 

 Sevenths Sevenths-inv 
Iso RWC Iso RWC 

Chordino 53.8% 58.0% 51.0% 53.1% 
CNN-CRF 69.7% 53.7% 66.4% 51.1% 
CJKU-BLSTM 59.4% X 57.4% X 
MF-BLSTM-CRF 71.9% 66.5% 67.3% 63.7% 

The proposed system participated in the MIREX 2017 
Audio Chord Estimation task (WL1) and achieved state-of-
the-art score in terms of the Sevenths evaluation metric on 
two Billboard datasets. 

6.2.3. Influence of the training dataset size 

To examine the influence of training data amount on system 
performance, we resize the MIDI dataset to 50, 100, 300, 500, 
1000, 1500, 2000, 2500 and 3000 tracks, and examine the 
relationship between the recognition accuracy and different 
amount of training data. 

 

Fig. 3. Relationship between chord recognition accuracy 
(WAOR) and different size of MIDI dataset. 

Fig. 3 shows the calculated relationship curve, where 
WAOR is tested on the whole dataset (Isophonics+RWC). It 
is apparently observed that more training data lead to more 
accurate recognition performance. Especially, when the 
dataset size is less than 500, the ascending velocity is very 
fast. When the dataset size goes up from 1000 to 2000 and 
3000, the curve tends to be converged, in other words, the 
overall chord recognition performance is no longer 
significantly improved. 

7. CONCLUSIONS 

In this work, we propose a new feature learning procedure 
and sequence decoder model for automatic chord recognition 
task. By combining the deep harmonic feature extractor 
(DRN) and the BLSTM-CRF sequence decoder, the proposed 
system is fully capable of automatically recognizing chord 
progressions, whose performance could reach or even 
outperform the state-of-the-art chord recognition systems. 
Since feature extraction of the DRN is oriented to note-level 
pitch class activations, the extracted feature (or the feature 
learning procedure) can be introduced into other MIR tasks 
that use Chroma-like features. 
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