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ABSTRACT

Recent work has shown that the end-to-end approach using
convolutional neural network (CNN) is effective in vari-
ous types of machine learning tasks. For audio signals, the
approach takes raw waveforms as input using an 1-D convo-
lution layer. In this paper, we improve the 1-D CNN archi-
tecture for music auto-tagging by adopting building blocks
from state-of-the-art image classification models, ResNets
and SENets, and adding multi-level feature aggregation to it.
We compare different combinations of the modules in build-
ing CNN architectures. The results show that they achieve
significant improvements over previous state-of-the-art mod-
els on the MagnaTagATune dataset and comparable results on
Million Song Dataset. Furthermore, we analyze and visualize
our model to show how the 1-D CNN operates.

Index Terms— convolutional neural networks, music
auto-tagging, raw waveforms, multi-level learning

1. INTRODUCTION

Time-frequency representations based on short-time Fourier
transform, often scaled in a log-like frequency such as mel-
spectrogram, are the most common choice of input in the
majority of state-of-the-art music classification algorithms
[1, 2, 3, 4, 5]. The 2-dimentional input represents acousti-
cally meaningful patterns well but requires a set of param-
eters, such as window size/type and hop size, which may
have different optimal settings depending on the type of input
signals.

In order to overcome the problem, there have been some
efforts to directly use raw waveforms as input particularly for
convolutional neural networks (CNN) based models [6, 7].
While they show promising results, the models used large fil-
ters, expecting them to replace the Fourier transform. Re-
cently, Lee et. al. [8] addressed the problem using very small
filters and successfully applied the 1D CNN to the music auto-
tagging task. Inspired from the well-known VGG net that uses
very small size of filters such as 3 × 3, [9], the sample-level
CNN model was configured to take raw waveforms as input
and have filters with such small granularity.

A number of techniques to further improve performances
of CNNs have appeared recently in image domain. He et. al.
introduced ResNets which includes skip connections that en-
ables a very deep CNN to be effectively trained and makes
gradient propagation fluent [10]. Using the skip connections,
they could successfully train a 1001-layer ResNet [11]. Hu
et. al proposed SENets [12] which includes a building block
called Squeeze-and-Excitation (SE). Unlike other recent ap-
proaches, the block concentrates on channel-wise informa-
tion, not spatial. The SE block adaptively recalibrates feature
maps using a channel-wise operation. Most of the techniques
were developed in the field of computer vision but they are not
fully adopted for music classification tasks. Although there
were a few approaches to readily apply them to audio domain
[7, 13]. They used 2D representations as input [13] or used
large filters for the first 1D convolutional layer [7].

On the other hand, some methods are concerned with
overall architecture of the model rather than designing a
fine-grained building block [2, 14, 15, 16, 17]. Specifically,
multi-level feature aggregation combines several hidden layer
representations for final prediction [2, 14]. They significantly
improved the performance in music auto-tagging by taking
different levels of abstractions of tag labels into account.

In this paper, we explore the building blocks of ad-
vanced CNN architectures, ResNets and SENets, based on
the sample-level CNN for music auto-tagging. Also, we
observe how the multi-level feature aggregation affects the
performance. The results show that they achieve significant
improvements over previous state-of-the-art models on the
MagnaTagATune dataset and comparable results on Million
Song Dataset. Furthermore, we analyze and visualize our
model built with the SE blocks to show how the 1D CNN op-
erates. The results show that the input signals are processed
in a different manner depending on the level of layers.

2. ARCHITECTURES

All of our models are based on the sample-level 1D CNN
model [8], which is constructed with the basic block shown in
Figure 1(b). Every filter size of the convolution layers is fixed
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Fig. 1. The proposed architecture for music auto-tagging. (a) The models consist of a strided convolutional layer, 9 blocks, and
two fully-connected (FC) layers. The outputs of the last three blocks are concatenated and then used as input of the last two FC
layers. Output dimensions of each block (or layer) are denoted inside of them (temporal×channel). (b-e) The 1D convolutional
building blocks that we evaluate.

to three. The differences between the sample-level CNN and
ours are the use of advanced building blocks and multi-level
feature aggregation. In this section, we describe the details.

2.1. 1D convolutional building blocks

2.1.1. SE block

We utilize the SE block from SENets to increase representa-
tional power of the basic block. As shown in Figure 1(c), we
simply attached the SE block to the basic block. The SE block
recalibrates feature maps from the basic block through two
operations. One is squeeze operation that aggregates a global
temporal information into channel-wise statistics using global
average pooling. The operation reduces the temporal dimen-
sionality (T ) to one, averaging outputs from each channel.
The other is excitation operation that adaptively recalibrates
feature maps of each channel using the channel-wise statistics
from the squeeze operation and a simple gating mechanism.
The gating mechanism consists of two fully-connected (FC)
layers that compute nonlinear interactions among channels.
Finally, the original outputs from the basic block are rescaled
by channel-wise multiplication between the feature map and
the sigmoid activation of the second FC layer.

Unlike the original SE block in SENets, our excitation op-
eration does not form a bottleneck. On the contrary, we ex-
pand the channel dimensionality (C) to αC at the first FC

layer, and then reduce the dimensionality back to C at the
second layer. We set the amplifying ratio α to be 16, after a
grid search with α = [2−3, 2−2, ..., 26].

2.1.2. Res-n block

Inspired by skip connections from ResNets, we modified the
basic block by adding a skip connection as shown in Figure
1(d). Res-n denotes that the block uses n convolutional layers
where n is one or two. Specifically, Res-2 is a block that
has the additional layers denoted by the dotted line in Figure
1(d), and Res-1 is a block that has a skip connection only.
When the block uses two convolutional layers (Res-2), we
add a dropout layer (with a drop ratio of 0.2) between two
convolutions to avoid overfitting. This technique was firstly
introduced at WideResNets [18].

2.1.3. ReSE-n block

The ReSE-n block is a combination of the SE and Res-n
blocks as shown in Figure 1(e). n denotes the number of con-
volutional layers in the block, where n is also one or two. A
dropout layer is inserted when n is two.

2.2. Multi-level feature aggregation

Fig. 1(a) shows the multi-level feature aggregations that we
configured. The outputs of the last three blocks are concate-
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Table 1. AUCs of CNN architectures on MTAT. “multi” and
“no multi” indicates if the multi-level feature aggregation is
used or not. † denotes using a weight decay of 10−4.

Block
MTAT

multi no multi

Basic [8] 0.9077 0.9055
SE 0.9111 0.9083
Res-1 0.9037 0.9048
Res-2 0.9098 0.9061
ReSE-1 0.9053 0.9066
ReSE-2 0.9113† 0.9102†

nated and then delivered to the FC layers. Before the con-
catenation, temporal dimensions of the outputs are reduced to
one by a global max pooling. Unlike [2], the concatenation
occurs while training the CNN and the average pooling over
the whole audio clip (i.e. 29 second long), which followed by
the global max pooling, is not included.

3. EXPERIMENTS

3.1. Datasets

We evaluated the proposed architectures on two datasets,
MagnaTagATune (MTAT) dataset [19] and Million Song
Dataset (MSD) annotated with the Last.FM tags [20]. We
split and filtered both of the datasets, following the previ-
ous work [5, 6, 8]. We used the 50 most frequent tags. All
songs are trimmed to 29 seconds long, and resampled to
22050Hz as needed. The song is divided into 10 segments of
59049 samples. To evaluate the performance of music auto-
tagging which is a multi-class and multi-label classification
task, we computed the Area Under the Receiver Operating
Characteristic curve (AUC) for each tag and computed the
average across all 50 tags. During the evaluation, we average
predictions across all segments.

3.2. Implementation details

All the networks were trained using SGD with Nesterov mo-
mentum of 0.9 and mini-batch size 23. The initial learning
rate is set to 0.01, decayed by a factor of 5 when a validation
loss is on a plateau. None of the regularizations are used on
MSD. A dropout layer of 0.5 was inserted before the last FC
layer on MTAT. For all building blocks, we evaluated either
with or without the multi-level feature aggregation. Since the
training for MSD takes much time longer than MTAT, we ex-
plored the architectures mainly on MTAT, and then trained the
two best models on MSD. Code and models built with Ten-
sorFlow and Keras are available at the link1.

1https://github.com/tae-jun/resemul

Table 2. AUCs of state-of-the-art models on MTAT and
MSD. † denotes that the model used an ensemble of three.

Model MTAT MSD
Bag of multi-scaled features [3] 0.8980 -
End-to-end [6] 0.8815 -
Transfer learning [4] 0.8800 -
Persistent CNN [21] 0.9013 -
Time-Frequency CNN [22] 0.9007 -
Timbre CNN [23] 0.8930 -
2D CNN [5] 0.8940 0.8510
CRNN [1] - 0.8620
Multi-level & multi-scale [2] 0.9017† 0.8878†
SampleCNN multi-features [14] 0.9064† 0.8842
SampleCNN [8] 0.9055 0.8812
SE [This work] 0.9111 0.8840
ReSE [This work] 0.9113 0.8847

4. RESULTS AND DISCUSSION

4.1. Comparison of the architectures

Table 1 summarizes the evaluation results of compared CNN
architectures on the MTAT dataset. They show that the SE
block is more effective than the Res-n blocks, increasing the
performance of the basic block for all cases. In the Res-n
block, only adding the skip connection to the basic block
(Res-1) actually decreases the performance. The combination
of the SE and the Res-2 improves it slightly more. However,
a training time of the ReSE-2 is 1.8 times longer than the ba-
sic block whereas the SE block only 1.08 times longer. Thus,
if the training or prediction time of the models is important,
the SE model will be preferred to the ReSE-2. The effect
of the multi-level aggregation is valid for the majority of the
models. We obtained two best results in Table 1 by using the
multi-level aggregation.

4.2. Comparison with state-of-the-arts

Table 2 compares previous state-of-the-art models in music
auto-tagging with our best models, the SE block and ReSE-
2 block, each with multi-level aggregation. On the MTAT
dataset, our best models outperform all the previous results.
On MSD, they are not the best but are comparable to the
second-tier.

5. ANALYSIS OF EXCITATION

To lay the groundwork for understanding how 1D CNNs op-
erate, we analyze the sigmoid activations of excitations in the
SE blocks at different levels graphically and quantitatively. In
this section, we observe how the SE blocks recalibrate chan-
nels, depending on which level they exist. The blocks used
for the analysis are from the SE model using the multi-level

368



1st block

5th (mid) block

9th (last) block

Fig. 2. Visualization of the sigmoid activations of excitations
in the SE model. The channel index was sorted by the average
of the activations.

feature aggregation and they were trained on MTAT. The acti-
vations were extracted from its test set. The activations were
averaged over all segments separately for each tag.

5.1. Graphical analysis

For this analysis, we chose three tags, classical, metal, and
dance that are not similar to each other as shown in Table
3. Figure 2 shows the average sigmoid activations in the SE
blocks for the songs with the three tags. The different levels
of activations indicate that the SE blocks process input audio
differently depending on the tag (or genre) of the music. That
is, every block in Figure 2 fires different patterns of activa-
tions for each tag at a specific channel. This trend is strongest
at the first block (top), weakest at the mid block (middle), and
becomes stronger again at the last block (bottom).

This trend is somewhat different from what are observed
in the image domain [12], where the exclusiveness of average
excitation for input with different labels are monotonically
increasing along the layers. Specifically, the first block fires
high activations for classical, low ones for dance, and even
lower ones for metal for the majority of the channels. On the
other hand, the activations of the last block vary depending
on the tags. For example, the activations of metal are high at
some channels but low at the others, which makes the activa-
tions noisy even though they are sorted. We can interpret this
result as follows. The first block normalizes the loudness of
the audios because the block fires high activations for classi-
cal music, which tend to have small volume, and low activa-

Table 3. Co-occurrence matrix of the tags used in Figure 2

classical metal dance
classical 704 0 1

metal 0 166 0
dance 1 0 153

1 2 3 4 5 6 7 8 9
block level

0.02

0.03

0.04

0.05

st
d

Fig. 3. Standard deviations (std) of the activations of excita-
tions across all tags along each layer.

tions for metal music, which tend to have large volume. Also,
the middle block processes common features among them as
they have similar levels of activations. Finally, the noisy ex-
clusiveness in the last block indicates that they effectively dis-
criminate the music with different tags.

5.2. Quantitative analysis

We assure the exclusiveness trend by measuring standard de-
viations of the activations across all tags at every level. Figure
3 shows that the higher the standard deviation is, the more the
block responses to the song differently according to its tag.
The result shows that the standard deviation is highest at the
first block, it drops and stays low up to the 5th block and then
increases gradually until the last block. That is, the four lower
blocks except the the bottom one (2 to 5) tend to handle gen-
eral features whereas the four upper blocks (6 to 9) tend to
progressively more discriminative features.

6. CONCLUSION

We proposed 1D convolutional building blocks based on the
previous work, the sample-level CNN, ResNets, and SENets.
The ReSE block, which is a combination of the three mod-
els, showed the best performance. Also, the multi-level fea-
ture aggregation showed improvements on the majority of the
building blocks. Through the experiments, we obtained state-
of-the-art performance on the MTAT dataset and high-ranked
results on MSD. In addition, we analyzed the activations of
excitation in SE model to understand the effect. With this
analysis, we could observe that the SE blocks process non-
similar songs exclusively and how the different levels of the
model process the songs in a different manner.
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