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ABSTRACT

Representing various sounds in language, such as sound
words, or onomatopoeias, is not only useful as an auxiliary
means for automatic speech recognition, but also essential
in emerging fields such as natural human-machine commu-
nication, searching audio archives for acoustic events, and
abnormality detection based on sounds. This paper proposes
anovel method for sound word generation from audio signals.
The method is based on an end-to-end, sequence-to-sequence
framework to solve the audio segmentation problem to find
an appropriate segment of audio signals along time that cor-
responds to a sequence of phonemes, and the ambiguity
problem, where multiple words may correspond to the same
sound, depending on the situations or listeners. Our tests
show that the method worked efficiently and achieved a 2.8
% mean phoneme error rate (MPER) and a 7.2 % word error
rate (WER) in a sound word generation task.

Index Terms— Sound word, onomatopoeia, sequence-to-
sequence model, sound transcription

1. INTRODUCTION

Sound words, or onomatopoeias, refer to the words simulat-
ing non-speech sounds, such as acoustic events, within the
pronunciation of a certain language system[1]. Using sound
words is a way to express acoustic information in a form that
humans can easily understand. Actually, we can imagine the
original sounds from the words[2], since the words are in-
tended to be reasonably similar to the sounds. Such sound
words are widely seen in many languages, including English,
Chinese, and Japanese, and they effectively support our daily
communication.

Sound words are useful not only for communication
among humans, but also between humans and machines. For
example, automatic speech recognition systems or conversa-
tion systems working closely with us are expected to generate
sound words to describe some unknown sounds. Since the
sounds words can be viewed as a very efficient form of infor-
mation compression, they will also be essential for searching
audio archivies with words for specific acoustic events and

978-1-5386-4658-8/18/$31.00 ©2018 IEEE

detecting abnormalities through sounds to detect accidents or
machine failures.

Here, we propose a novel sound-word generation sys-
tem based on a sequence-to-sequence conversion framework
(hereafter, Seq2Seq) [3]. Section 2 first reviews the existing
methods and specifies the problem. Section 3 then introduces
our model. Section 4 evaluates the proposed system, and
Section 5 concludes the paper.

2. PROBLEMS IN SOUND WORD GENERATION

2.1. Previous work

Environmental sound classification has been widely discussed
in the literature. If we can appropriately classify all possible
sounds, then we might be able to assign some suitable sound
words according to their types[4]. For example, we may be
able to assign “bow wow” for dog barking. However, in real-
ity, there are some difficulties in this approach. For example,
it is difficult to define the sound classes in advance. Second,
the sounds will significantly vary even within a specific class
— a dog will not necessarily bark “bow wow” at all times.
Third, the sound classification approach may not be able to
deal with new, unknown sounds appropriately.

Therefore, here we focus on the sound word generation
approach rather than sound classification. We aim to achieve
the generation for various featured sound events such as de-
clining sound, sustaining sound and repeating sound. In pre-
vious research, finer grained classes, such as phonemes, were
assigned to finer grained segments along time. In this ap-
proach, it is known that using typical automatic speech recog-
nition methods, depending on language models, does not pro-
duce meaningful results[5, 6]. Thus, the problem is twofold:
one is segmentation of signals to find a section that corre-
sponds to one phoneme (or a certain unit, such as syllable),
and the other is dealing with intrinsic ambiguity involved in
the sound word generation task. Here, ambiguity means that
even a single sound can correspond to multiple sound words
depending on the situations and listeners. For example, some
may hear a dog as “bow wow,” while others hear it as “wang,
wang.”

Toward onomatopoeia generation, Miyazaki et al. [7] re-
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cently proposed the use of connectionist temporal classifica-
tion (CTC)[8]. The CTC has been successfully applied to
phoneme recognition for speech recognition[9]. In [7], the
segmentation problem was handled through the training of
recurrent neural networks (RNN), but the ambiguity prob-
lem was not addressed. Moreover, an approach solely based
on direct correspondence between short-time sound segments
and a phoneme cannot deal with summarization of repeat-
ing sounds. The summarization is commonly used in human
communication; for example, when a dog barks five times, we
tend to represent it with a fewer times of repetition, like “bow
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2.2. Formulation of the problem

When a sound event has a latent variable z which is the sum-
marized feature containing enough information for generating
sound words, a sequence I, which representing a sound word,
is generated based on probability distribution p(I|z). The la-
tent variable z is extracted from acoustic features X by map-
ping f(X — z). Mapping f corresponds to sound-to-word
conversion by humans. Given p(l|z) and z, the optimum se-
quence [ is obtained by

I = arg max p(l|z). (D
l

The problem is then considered as estimating f and prob-
ability distribution p(l|z). The system generates sound words
I with estimated mapping f and estimated probability distri-
bution p(1]z).

l=arg lmaXﬁ(llf(X)) 2
Note that the segmentation and ambiguity problems are
both incorporated in this formulation.

3. METHOD

3.1. System configuration

To solve the problem, we employ the Seq2Seq model[3][10].
It is a combination of the recurrent language model [11] and
feature extraction by RNN, and has been successfully applied
to inter-sequence conversion[12, 13]. The advantage of this
approach is that the model can simply learn correspondence
between the observation and the target without determining
how to extract the latent features in advance.

As shown in Fig. 1, our system comprises Bi-directional
LSTM (BDLSTM)[14] as the encoder, and two-layer LSTM
as the decoder. The system takes an audio signal as an input
and outputs a series of sound word units, terminated with the
“EOS” (end of the sequence) symbol. In the following discus-
sion, for simplicity, we use a series of mel-frequency cepstral
coefficients (MFCC) as the input[15], and a phoneme as the
sound word unit.
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Fig. 1. Block diagram of proposed sound word (ono-

matopoeia) generation system based on Seq2Seq model.

The encoder further extracts the summarized features
from the input MFCC features, and the decoder generates
sequence of phonemes based on the extracted features. The
encoder learns the mapping f and estimates the latent vari-
able 2. Then, the decoder estimates [ based on 2. Regarding
loss functions, we consider two kinds of training methods:
vanilla training and multi-task training.

3.2. Vanilla training

Vanilla training is a general training method for Seq2Seq
models. The softmax cross entropy between the model output
and the target at each time step is used as the loss function.
Let O(t) denote an output vector from the decoder at step ¢,
the loss value is obtained by

o (_e(0(0)
1g<ziexp<oi<t>>> - O

This method is expected to yield a reasonable phoneme re-
flecting the output history of the decoder. On the other hand,
this method does not consider the probabilistic formulation
shown in Eq.(1) explicitly.

LOSSvanilla(lta O(t)) =

3.3. Multi-task training

From Eq.(1), the decoder should learn p(l|z), but directly cal-
culating p(l| z) is difficult because of the combinatorial explo-
sion of the number of states as the sequences become longer.
Therefore, we specifically focus on the probability distribu-
tion of the first phoneme, p(l1]2), to avoid it.

In this method, estimating p(l1|z) is considered a sub-
task, while the main task is the same as in the vanilla training.
The loss function is the mean squared error between the target

p(l1|z) and the probability distribution obtained by applying

the softmax function to the first output.

A (X)) = softmax(O(1)), @)
Lossutasc = 3 (A1 1F(X) ~p(1]2)) )
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This scheme enables the model to learn a part of the proba-
bilistic model as in Eq.(1) as an approximation with a fewer
number of state labels compared to the full modeling.

4. EXPERIMENTS

4.1. Dataset

To evaluate the proposed method, we used sound signals of
acoustic events from the RWCP (Real World Computing Part-
nership) sound scene database[16] for training and testing. It
includes various sounds such as bells, coins, and hitting wood
with a stick. The sampling frequency is 48 kHz, and quanti-
zation bit rate is 16 bits. A total of 8§10 sound sources were
divided into eight parts for cross-validation to evaluate the
system.

Table 1 describes the datasets we used. The sound word
labels were collected from human listeners — 73 Japanese
speakers were asked to give three onomatopoeias for each
sound in Katakana, which is a Japanese syllabary. Each
Katakana answer was converted to a string of International
Phonetic Alphabet (IPA) to create the target sound words.
In Japanese, onomatopoeias are usually written in Katakana,
and it is straightforward to convert from Katakana to IPA,
and vice versa. We associated 12 sound words for each sound
source for the dataset for the main task. The probability
distribution p(l;|X’) was also calculated from the answers.

4.2. Procedures

Table 2 lists the experimental conditions. As output phonemes,
we used 32 kinds of symbols that consist of the ones com-
pliant with IPA phonetic symbols[18] and Japanese-specific
morae:
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e “N”: moraic nasal

e “H” : second mora of long vowel
e “Q” : moraic silence when emphatic

In addition, we use three special symbols: “BOS (beginning
of the sequence)”, “EOS”, and “UNK (unknown).”

For comparison, we conducted an experiment with the
CTC model. The CTC model has three-layer BDLSTM, as
reported in [7]. The outputs were the same 32 kinds of sym-
bols, except for a “blank” symbol used instead of the label
“UNK.”

Table 1. Sound Sources and Dataset

Sound sources 810

Sound word labels 12 per source
Dataset for main-task learning 9720 pairs
Dataset for sub-task learning 810 pairs
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Table 2. Experimental Conditions

LSTM cells 128,256, 512
Batch size 400
Epoch 25
Number of output labels 32
Optimizing method ADAM [17]
Multi-task pretraining 30
Sub-task iteration 12 per epoch
MFCC dimensions 20
Window length for MFCC 2048 samples
Window shift for MFCC 512 samples

We performed all the tests with the eight-fold cross-
validation scheme.

4.3. Evaluation measures

We use the word error rate (WER) and the mean phoneme
error rate (MPER) as the evaluation measures.

The WER is simply calculated by n/N, where N is the
number of test data and n is the number of generated words
that exactly matches the target words associated with the
sound. This metric does not reflect the similarity between the
words.

The phoneme error rate (PER) serves as a more flexible
performance metric than the WER. As in the Eq. 6, the PER
is the “edit distance” between two phoneme sequences, nor-
malized by the length of target phonemes.

Replacement Err.+Insertion Err.+Deletion Err.
The Number of Target Phonemes

To calculate the mean PER (MPER), the PER for each
output word and each of the corresponding multiple target
words is first calculated to find the minimum PER, and the
obtained minimum values are averaged over the whole test
set.

PER =

(6)

4.4. Results

Table 4 lists the error rates obtained in the tests. The model
with vanilla training with 512 LSTM cells produced the best
results, and the MPER was 2.8 %, which is quite small com-
pared to the result from the CTC model. The difference be-
tween the results with the vanilla and multi-task training was
not significantly large in this experiment.

Fig. 2 shows the learning curves with respect to WERs
and MPERs, obtained from one specific trial with 512 LSTM
cells, as an example. We can see that both vanilla (Va.) and
multi-task (M.t.) learning converge within about 20 epochs,
showing similar curves.

Some examples of generated sound words are listed in Ta-
ble 3. Among the 105 experimented test sounds, there was



Table 3. Examples of Generated Sound Words

Typical Seq2Seq .
N CTC D t
ame sound words | (multi-task)  (vanilla) eseription
buzzer bwH, gaH bw H bw H bw H A muddy sound with a constant low pitch
wood3 kaQ, kataQ kaQ taQ kaQ A light sound by hitting a wooden board
teak3 koQ, ton pPON poq PON A sound by hitting a wooden board with a wooden stick
capl paQ, poQ poku paQ paQ A sound of opening a cap vigorously
metal05 toN, ban ton paQ paQ A dark sound by tapping a metal plate with a metal rod
whistlel piH,¢iH piH piH piiHH A whistle-like sound with a constant high pitch
bells4 Jaririri tfirin tfirin tfrrrrrr--- | A cyclic sound of bells
candybwl  bon.kon ton don tannN A sound by hitting a metal box with a metal rod
coins2 kot[ariririH kororiH~ tfariririririi  krr--- riH~ | A sound of multiple coins dropped on wood
Table 4. Error Rates
Model #Cells | WER[%] MPER[%] .
proposed 1: 128 24.4 9.4 0.8
. 256 9.6 4.0 0]
2 11
Seq2Seq (vanilla) 512 72 2.8 © o6l
proposed 2: 128 29.1 10.9 §
. 256 12.3 4.9 L 041
Seq2Seq (multi-task) 512 9.9 41
128 85.1 377 021
CTC [7] 256 79.9 33.0
512 78.9 37.0 001 | ; ; . : :
0 5 10 15 20 25
Epoch

only one input sound where the three methods, vanilla, multi-
task, and CTC, output the same words, which was the sound
of a buzzer. Meanwhile, the number of input sounds for which
each method outputs different words was 81.

Note that WER and MPER do not weight target labels,
and naturally sounding words and barely acceptable ones are
treated in the same way. Therefore, subjective observation
or evaluation is useful to check which words better represent
input sounds.

From our observation, words generated by the CTC model
tend to correspond to the input in a flexible manner, but they
are sometimes unnatural and hard to pronounce. In particu-
lar, the CTC model tends to output poor results for cyclic or
repetitive sounds such as coins lightly hitting each other and
an alarm clock ringing. With the Seq2Seq models, it is ob-
served that this phenomenon is greatly diminished. We think
that this is an advantage arising from incorporating contextual
information.

5. CONCLUSION

This paper proposed a novel end-to-end method to generate
sound words from audio. We first presented a probabilis-
tic formulation of the problem that incorporates segmenta-

—-— MPER of M.t.Seq2Seq
—-— MPER of Va.Seq2Seq
—-— MPER of CTC

WER of M.t.Seq2Seq
WER of Va.Seq2Seq
WER of CTC

Fig. 2. Learning curves of the experimented models.

tion and ambiguity problems. We then proposed a system
based on the Seq2Seq model as a solution to the problems.
The experiments show that the method effectively works and
yields significantly better results compared to an implementa-
tion based on the CTC model. We expect that the sound words
or onomatopoeias will open the way to representing sounds
in a compact and human-friendly manner and will therefore
be useful in applications such as audio search and abnormal-
ity detection, as well as auditory scene description systems.
Our future work will include tests with languages other than
Japanese, subjective evaluation of the model, and a study re-
garding its usability.
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