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ABSTRACT

Audio classification is the task of identifying the sound categories
that are associated with a given audio signal. This paper presents
an investigation on large-scale audio classification based on the re-
cently released AudioSet database. AudioSet comprises 2 millions
of audio samples from YouTube, which are human-annotated with
527 sound category labels. Audio classification experiments with
the balanced training set and the evaluation set of AudioSet are car-
ried out by applying different types of neural network models. The
classification performance and the model complexity of these mod-
els are compared and analyzed. While the CNN models show better
performance than MLP and RNN, its model complexity is relatively
high and undesirable for practical use. We propose two different
strategies that aim at constructing low-dimensional embedding fea-
ture extractors and hence reducing the number of model parameters.
It is shown that the simplified CNN model has only 1/22 model
parameters of the original model, with only a slight degradation of
performance.

Index Terms— Audio classification, DNN, embedding features,
reducing model complexity

1. INTRODUCTION

The rapid development of technology has made the production, ren-
dering, sharing and transmission of multimedia data easy, low-cost
and hence become part of our daily life. The growth of online avail-
able (public or restricted-access) audio and visual data is irreversible
trend. Having effective and efficient tools for classifying, indexing
and managing multimedia data is not only for the convenience and
enjoyment of individuals, but also critical to the social and economic
development in the big data era.

Audio is inarguably one of the most important types of multi-
media resources to be reckoned. Audio classification is generally
defined as the task of identifying a given audio signal from one of
the predefined categories of sounds. Depending on the applications,
the sound categories could be broad, e.g., music, voice, noise, or
highly specified, e.g., children speech. The existence of diverse task
definitions has made it difficult to compare the methods and results
from different research groups and therefore hindered constructive
exchange of ideas. In recent years, there have been organised efforts
on setting up open evaluation or competitions on large-scale audio
classification. For example, the IEEE AASP challenge DCASE2016
includes the acoustic scene classification (ASC) as an important part.
The ASC task is to classify a 30-second audio sample as one of the
15 pre-defined acoustic scenes. Among the 30 participating teams in
DCASE2016 ASC, Eghbal-Zadeh et al. [1] proposed a hybrid model
using binaural I-vectors and CNN, and demonstrated the best perfor-
mance. It was shown that log-mel filterbank features perform better
than MFCC, when CNN models are applied [2]. In DCASE2017,

CNN is most popular among the top-10 models. Mun et al. [3]
addressed the problem of data insufficiency and proposed to apply
GAN-based data augmentation method to significantly improve the
classification accuracy. There was also a trend on using binaural
audio features rather than monaural features.

The DCASE2016 ASC task provides an annotated database that
contains 9.75 hours of audio recordings for training. Such an amount
is considered inadequate to exploit the full capability of the latest
deep learning techniques. In ICASSP 2017, the Sound and Video
Understanding team at Google Research announced the release of
AudioSet [4], which comprises a large amount of audio samples
from YouTube. The total duration of data in the current release
of AudioSet exceeds 5000 hours. Unlike the DCASE2016 ASC
database, audio samples in AudioSet are labeled by a large number
of sound categories which are organised in a loose hierarchy. While
the availability of AudioSet has caught great attention from the re-
search community, there have been few published studies that report
referable classification performance on the database. In [5], a related
database named YouTube-100M was used to investigate large-scale
audio classification problem. The YouTube-100M dataset contains
100 million YouTube videos. The experimental results show that
with massive amount of training data, a residual network with 50
layers produces the best performance, in comparison with the MLP,
AlexNet, VGG and Inception network [5].

This paper presents our recent attempt to large-scale audio clas-
sification with the newly released AudioSet. To our knowledge, ex-
cept for the preliminary evaluation briefly mentioned in [5], there
has been no official published result on the complete AudioSet clas-
sification task. We apply a variety of commonly used DNN mod-
els on the AudioSet task and find that CNN based models generally
achieve better performance than MLP and RNN. We further propose
to exploit low-dimension feature representation of audio segments,
so as to achieve significant reduction of CNN model complexity. It is
shown that the number of model parameters could be reduced by 22
times while maintaining comparable performance of classification.
In addition, the effectiveness of the proposed methods is validated
on the DCASE2016 ASC database.

In Section 2, the AudioSet and the TUT Acoustic Scenes 2016
database are described. The general framework of the classification
system and the proposed strategy of model complexity reduction are
explained in Section 3. Experimental results with different types of
neural network models are given in Section 4.

2. DATASETS FOR AUDIO CLASSIFICATION

2.1. AudioSet

The AudioSet is a large-scale collection of human-annotated au-
dio segments from YouTube [4]. It is provided as text (csv) files
that contain the following attributes of each audio sample: YouTube
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Video ID, start time and end time of the audio clip, and sound cat-
egory labels. Each audio clip is 10 second long. The sound labels
were obtained through a human-annotation process, in which human
raters were asked to confirm the presence of a set of hypothesized
sound categories. Both audio and video components were presented
to the raters. The hypothesized sound categories were generated
from multiple sources, including a video-labeling system and var-
ious meta-data information. There may be multiple sound categories
co-existing in an audio clip. There are totally 527 sound categories
being used in AudioSet. These categories are arranged following
a loose hierarchy. For example, “speech” and “male speech” are
treated as two categories at different hierarchical levels. However,
this kind of hierarchy is not taken into account in the audio classifi-
cation experiments.

The entire AudioSet contains about 2 million audio samples,
which correspond to more than 5, 000 hours of data. The audio
samples are divided into the balanced training set, the unbalanced
training set and the evaluation set. In this study, only the balanced
training set and evaluation set are used. A number of audio sam-
ples are excluded for various reasons, e.g., deleted YouTube links,
duration shorter than 10 seconds. As a result, the number of audio
samples used for training and evaluation are 20, 175 and 18, 396 re-
spectively. A validation set is created by randomly selecting 10% of
the training data.

2.2. TUT Acoustic Scenes 2016 database

The TUT Acoustic Scenes 2016 database [6] was used in the
DCASE2016 challenge. There are 15 defined acoustic scenes,
covering various indoor and outdoor environments. The develop-
ment dataset contains 1170 audio samples and the evaluation dataset
contains 390 samples. The number of samples representing different
scene classes are the same. Each audio sample is 30 second long
and said to be from one and only one of the 15 scenes. The total
duration of recordings is 13 hours.

3. SYSTEM DESIGN

3.1. General System Framework

Figure 1 shows the general framework of a segment-based audio
classification system. The typical length of a segment is 1 second. A
segment can be divided into short-time frames (typically 25 ms long)
which are used for spectral analysis. The segment-based system can
make better use of the temporal information of audio signals than the
frame-based system (e.g., the baseline GMM model in DCASE2016
ASC task [7]). In Figure 1, the input audio signal (e.g., 10-second
audio clip in AudioSet) is divided into non-overlapping segments.
The sound category labels of a segment are inherited from those of
the input audio signal. For each segment, a time-frequency repre-
sentation is derived for classification purpose. The time-frequency
features of each segment are fed into a classifier to obtain the clas-
sification scores. The sample-level classification score is calculated
by averaging the segment-level scores.

Commonly used time-frequency representations for audio clas-
sifications are derived from the short-time Fourier transforms. Ex-
amples include log-mel filterbank features, Constant-Q transform
(CQT) [8], and MFCC. Based on our preliminary experiments, for
DNN-based systems, the log-mel features give the best performance
among these feature types, and thus are used in our experiments.

For the classifier in Figure 1, our main focus of experiments is
the DNN models. There has been growing interest in extracting the

embedding features from a well-trained DNN classifier in audio clas-
sification area. For example, Rakib et al. [9] uses the trained CNN
model to extract its embedding feature, which is fed into PLDA to
improve classification performance. In [3], the use of embedding
features from a trained DNN classifier also serve as a critical com-
ponent in its proposed method. In this paper, several ways to obtain
low-dimensional embedding feature are studied in Section 4.3.

Fig. 1: The general framework for a segment-based audio classifica-
tion system.

3.2. Strategy for Reducing Model Complexity

3.2.1. Use of Bottleneck Layer

Bottleneck layer has been applied in speech recognition area to ex-
tract embedding features. The extracted feature is called bottleneck
feature and is generally better than the hand-crafted feature [10]. Re-
cently, bottleneck layers were investigated in large-scale audio clas-
sification by Shawn Hershey et al. [5]. The introduction of bot-
tleneck layer leads to faster training, while maintaining comparable
classification performance.

A bottleneck layer typically lies in between two (hidden) layers
in a fully-connected neural network. It is a middle layer designed
to have a relatively small number of neurons as compared to other
hidden layers, and therefore called “bottleneck”. By constructing a
bottleneck layer, a low-dimensional feature representation of input
data can be generated. Figure 2 shows an example of MLP with a
bottleneck layer.

In this study, we make use of the bottleneck layers to achieve
reduction of model complexity, and through which low-dimensional
embedding feature extractor is constructed. Different sizes of bottle-
neck layer are experimented to reveal the trade-off between model
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performance and complexity.

Fig. 2: An illustration of bottleneck layer in a multi-layer perceptron
(MLP). The bottleneck layer has smaller size than its adjacent layers.

3.2.2. Global Average Pooling

A CNN-based classification model is typically composed of convo-
lution layer(s) and fully connected (FC) layer(s). The common way
of making connection between a convolution layer and a FC layer
is by flattening (vectorizing) the feature maps of the convolutional
layer and using the flattened features as the input of the FC layer.
Since the flattened features have a very large dimension, the number
of required model parameters would be excessive. Moreover, it may
increase the chance of over-fitting of the FC layers.

In [11], global average pooling strategy is proposed to solve the
problem of over-fitting of FC layers, and its effectiveness of being a
regularizer has been verified. It is an average pooling operation ap-
plied on each feature map obtained from the last convolutional layer,
with the size of pooling window equal to the size of feature map.
This pooling result is used as the input of FC layer(s) for classifi-
cation. Figure 3 illustrates the conventional way and global average
pooling to transform 2D feature maps into 1D feature vector.

In this study, we emphasize global average pooling for its effi-
cacy of reducing CNN model complexity, while preserving the per-
formance of classification.

Fig. 3: Left: conventional way of linking up convolutional layer and
fully connected layer; right: global average pooling.

4. EXPERIMENTS

4.1. EXPERIMENTAL SETUP

4.1.1. Data Preprocessing

Each audio sample in the dataset is divided into non-overlapping
1-second segments. The sound category labels assigned to each seg-
ment are exactly the same as the source audio sample. Short-Time
Fourier Transform (STFT) is applied on the audio segments with a
window length of 25 ms, hop length of 10 ms and FFT length of
2048. Subsequently 64-dimensional log-mel filterbank features are
derived from each short-time frame, and the frame-level features are

put together to form a time-frequency matrix representation of the
segment. Dimension-wise normalization of the log-mel features is
performed using the means and variances calculated from all audio
samples in the training set.

4.1.2. Performance Metric

The Area Under Receiver Operating Characteristic curve, abbrevi-
ated as AUC [12], is used as our performance metric in the exper-
iments with the AudioSet. In the context of binary classification,
AUC can be viewed as the probability that the classifier ranks a ran-
domly chosen positive sample higher than a negative one [13]. For a
classification model only makes random guesses, the AUC value is
0.5. A perfect classification model gives the AUC value of 1.0. AUC
is found to be insensitive to the distribution of positive and negative
samples, as compared to other evaluation metrics like precision, ac-
curacy, F1 score and mAP.

For a multi-class problem, the overall measure of AUC is ob-
tained as the weighted average of the AUC values for individual
classes. The weight for a specific class is proportional to its preva-
lence in the dataset.

4.1.3. Model Training and Parameter Setting

The experimented models in this study are implemented using the
deep learning toolbox PyTorch (http://pytorch.org/). The key pa-
rameters used for training are empirically determined. The initial
learning rate and mini-batch size are set to 0.0001 and 60. Model
training is done by minimizing the cross-entropy loss with the Adam
optimizer (β1 = 0.9 and β2 = 0.999) and learning rate decay strat-
egy. For MLP and CNN models, dropout (with dropout probability
= 0.5) and weight decay (coefficient = 0.0015) are applied for reg-
ularization purpose. The sigmoid function is used in the output layer
for all models, considering that an audio sample may have multiple
sound labels.

4.2. Model Comparison

Table 1 shows the experimental results with six different models (or
different model configurations). The MLP model has 3 hidden layers
with 1000 neurons per layer. For the MLP, batch normalization and
the ReLU activation function are applied. The LSTM (Long-Short
Term Memory) model contains 3 LSTM layers, each having 2048
units. GRU refers to Gated Recurrent Unit [14]. B-GRU-ATT refers
to bi-directional GRU with its output weighted by attention network
[15] whose context vector size is 1024. It has 2 GRU layers, each
with 2048 units. To our knowledge, performance of recurrent mod-
els has not been reported for AudioSet yet.

CNN models have been investigated for large-scale audio clas-
sification on YouTube-100M database in [5]. In this study, the CNN
models being experimented are the AlexNet and Residual Network
with 50 layers (ResNet-50) [16]. The AlexNet used in our exper-
iments is similar to the AlexNet described in [17], which was de-
signed for image classification with 224×224×3 input. We make a
change of its first convolutional layer to have a kernel size of 11× 7
and stride of 2×1, so as to obtain a similar size of feature map at the
first convolutional layer. For the FC layers, the size is set to 3982.
By AlexNet(BN), we mean that a batch normalization layer is added
after each layer (convolutional and FC).

For the ResNet-50 model, we follow the same setting as in [5],
by changing the stride to 1 in the first convolution layer. As a result,
the window length of its global average pooling layer is set to 7× 4,
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Table 1: Classification performance of six DNN models tested on
AudioSet evaluation set, trained with the balanced training set. The
letter “M” in “Model Size” column stands for million.

Model Structure Model Size AUC
MLP 3× 1000 9.48M 0.845
LSTM 3× 2048 85.54M 0.866
B-GRU-ATT 2× 2048 107.85M 0.870
AlexNet - 56.09M 0.895
AlexNet(BN) - 56.11M 0.927
ResNet-50 - 24.58M 0.914

to match the change of feature map size. The model sizes given in
the table refer to the number of model parameters in the respective
models.

The overall AUC is calculated over 527 audio classes (see Sec-
tion 4.1.2). It can be seen that the AlexNet with batch normaliza-
tion performs the best among all tested models. It even outperforms
the 50-layer deep residual network, which was reported to have the
highest performance among CNN models for large-scale audio clas-
sification [5].

4.3. Reducing Model Complexity

While the AlexNet(BN) model has been shown to have the best per-
formance among different DNN models, its model complexity is rel-
atively large and thus undesirable for practical use. As described in
Section 3.2, using a bottleneck layer and performing global average
pooling are effective techniques of reducing the number of model
parameters. We experiment with different arrangements of the FC
layers and the bottleneck layer in the AlexNet(BN) model. The re-
sults are compared as in Table 2. “Bneck-Final-64” refers to that a
64-dimension bottleneck layer is inserted between the output layer
and the last FC layer, while “Bneck-Mid-64” means that the 64-
dimension bottleneck layer is inserted between the two FC layers.
For the “FC-64” configuration, the size of both FC layers is reduced
to 64. Three different sizes of embedding features are tested: 64,
256 and 1024. Lastly, “Global-avg-pool” means that a global aver-
age pooling layer is used to replace the two FC layers. The resulting
feature dimension after pooling is 256, which is equal to the number
of feature maps in the last convolution layer.

Generally, a larger size of bottleneck layer or FC layers lead
to better classification performance. Reducing the size of existing
FC layers without having an additional bottleneck layer would cause
noticeable degradation of performance, despite the significantly re-
duced model complexity. With the same size of bottleneck layer, it is
more beneficial to have the bottleneck inserted between the two FC
layers (i.e., the “Bneck-Mid” configurations). “Bneck-Mid-1024”
could attain the same AUC as the original AlexNet(BN), with about
14% less model parameters. By applying global average pooling
strategy, the model complexity is reduced to 2.59M. which is about
1/22 of the original AlexNet(BN), 1/9 of the ResNet-50 model,
and 1/4 of the MLP model. Its performance is comparable to the
ResNet-50 model, and slightly worse than the AlexNet(BN).

4.4. Acoustic Scene Classification in DCASE2016

The proposed models are also evaluated with the TUT Acoustic
Scenes 2016 database. Due to the different nature of the scene clas-
sification task, the softmax function is used at the output layers of
the neural networks. The other settings of training are the same as

Table 2: Performance of 4 types of strategies for reducing model
complexity. All strategies are applied on the same AlexNet(BN)
model as described in Section 4.2.

Strategy Model Size AUC
None 56.11M 0.927
Bneck-Final-64 54.30M 0.889
Bneck-Final-256 55.17M 0.917
Bneck-Final-1024 58.63M 0.925
Bneck-Mid-64 40.77M 0.915
Bneck-Mid-256 42.29M 0.924
Bneck-Mid-1024 48.41M 0.927
FC-64 3.07M 0.841
FC-256 4.95M 0.905
FC-1024 13.22M 0.924
Global-avg-pool 2.59M 0.916

stated in Section 4.1.3. Among the 1170 audio samples in the train-
ing set, 170 samples are randomly selected to be the validation data.
The AlexNet(BN) model attains a classification accuracy of 87.4%
on the evaluation set, while a 3-layer MLP with 1000 neurons per
layer has an accuracy of 78.2%, and a well-tuned LSTM model has
an accuracy of 82.8%. By applying the strategy of global average
pooling, the size-reduced AlexNet(BN) has an accuracy of 85.9%.
This further confirms the effectiveness of CNN and global average
pooling strategy, though the ASC may not be viewed as a large-scale
task as compared to the AudioSet.

5. CONCLUSION

The AudioSet database provides useful resources to enable and
advance research on large-scale audio classification. This paper
presents one of the earliest batches of experimental results on this
database using the latest neural network models. It has been shown
that CNN models are more effective than MLP and RNN. The model
complexity of the best-performing CNN can be significantly reduced
by introducing a bottleneck layer at the fully-connected layers and
by applying global average pooling. It must be noted that only a
small portion of AudioSet has been used in the present study, though
this small portion already contains 20 times more audio samples
than the existing DCASE2016 ASC database.
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