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ABSTRACT

Acoustic event detection, the determination of the acoustic
event type and the localisation of the event, has been
widely applied in many real-world applications. Many works
adopt the multi-label classification technique to perform the
polyphonic acoustic event detection with a global threshold
to detect the active acoustic events. However, the manually
labeled boundaries are error-prone and cannot always be
accurate, especially when the frame length is too short to
be accurately labeled by human annotators. To deal with
this, a confidence is assigned to each frame and acoustic
event detection is performed using a multi-variable regression
approach in this paper. Experimental results on the latest TUT
sound event 2017 database of polyphonic events demonstrate
the superior performance of the proposed approach compared
to the multi-label classification based AED method.

Index Terms— acoustic event detection, multi-label
classification, confidence, multi-variable regression

1. INTRODUCTION

Acoustic event detection (AED) which deals with the event
type and the localization (determination of the start and end
positions) of the acoustic events, has been widely applied
in many real world applications, such as in surveillance
systems, siren detection systems [1], chew event detection
systems [2] and human-computer interaction [3]. Intra-class
variations, the spectral-temporal properties across classes and
multi polyphonic acoustic event levels pose great challenges
to acoustic event detection. Due to the significant real world
applications of AED and the challenges being faced, some
campaigns, such D-CASE [4][5][6] have attempted to capture
the wide range of variations in the design of the acoustic event
detection databases [7].

Many approaches are proposed based on the multi-label
classification framework. Local acoustic features, such as
zero-crossing rates, energy coefficients and Mel-frequency
cepstral coefficients (MFCC) are extracted. Then, these local
features are modelled by some representative models, such
as Gaussian Mixture Models (GMM) [8] or Hidden Markov
Models (HMM) [9]. In [10], random forest techniques were
utilized to perform the acoustic event detection task. During

testing, a segmented event is recognized under the criteria
of maximum posterior probability. Recently, motivated by
the successful application of neural networks in speech and
image processing, deep neural networks (DNN) [11][12] and
recurrent neural networks (RNN) [13][14] based approaches
have been proposed to deal with the challenging problem of
real world polyphonic acoustic event detection.

When the acoustic event detection is performed using
the multi-label classification approach, the manually labeled
boundaries are converted into frame based training samples
corresponding to different acoustic event labels. Usually the
frame length varies from 5ms [12] to 100ms [15], which
requires the manually labeled boundaries to be accurate when
the frame length is short. However, the frame wise labeling
accuracy around the event boundaries cannot be always
guaranteed due to labelling errors from human annotation,
especially when the acoustic events are overlapped, which
makes the multi-label classification based acoustic event
detection more challenging.

In this work we propose a novel confidence measure
which is assigned to each frame. If the current frame is
closer to the middle of the manually labeled event boundaries,
a higher confidence is assigned to the current frame. By
doing this we can achieve: 1) soft boundaries rather than
hard boundaries, which makes the acoustic event detection
system more tolerant to the label inaccuracy at the boundaries;
2) continuous confidence assigned according to the event
position containing rich event position information, which
ideally match the event detection task for the determination
of the event happening time. After different confidences are
assigned to different frames, the training outputs are real-
valued variables rather discrete-valued labels. In this paper,
we adopt simple parabolic functions to obtain the confidence
with a preset probability at the onset and offset frame.
Afterwards, the multi-variable regression rather than multi-
label classification method is used to perform the acoustic
event detection task.

The structure of this paper is as follows. In Section 2, an
overview of the multi-label classification based AED system
is shown. Our proposed approach and algorithm are described
in Section 3. In Section 4, we provide the experimental results
followed by the conclusion and future work in Section 5.
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2. MULTI-LABEL CLASSIFICATION BASED
ACOUSTIC EVENT DETECTION

2.1. The task of the polyphonic AED system

Fig. 1 shows the task of polyphonic acoustic event detection.
As shown in Fig. 1, each frame may correspond to more
than one acoustic label (‘people speaking’ and ‘car passing
by’ overlap with each other). In a polyphonic acoustic event
detection system, the determination of the event type and
position can be regarded as a multi-label problem.

car passing by

people speaking

wind blowingbackground sound

bird singing

children shouting

Fig. 1. Polyphonic acoustic event detection task.

2.2. Multi-label classification based AED

In this section, multi-layer perceptron (MLP) and convolu-
tional neural network (CNN) based acoustic event detection
systems from our previous work [16] are adopted as the
baseline systems.

The audio signal is represented by the log-mel energies
corresponding to one output training label. The training
labels, which can be obtained from the given labeled onset
and offset time of the database, are in binary format. For
each training frame, the corresponding output training label
is a binary representation for each acoustic event type. The
output training label at frame k is expressed as:

Lk = {lk,1, lk,2, ..., lk,N} (1)

where lk,n (n ∈ {1, 2, ..., N}) is set to 1 when the nth event
is active at frame index k and N is the number of event types
of interest.

For the MLP based acoustic event detection, the multi-
layer perceptron with two layers, each with 50 units, is used
to construct the multi-class classification based acoustic event
detection system. Acoustic features of 5 consecutive frames
are concatenated to form the input space. The Lk is the output
space for the classifier. The cross entropy is adopted as the
loss function and the dropout strategy with a value of 0.2 is
used while training the multi-label classifier.

Fig. 2 shows the flowchart of the multi-label classification
based acoustic event detection system using CNN. The
convolutional neural network model structure includes two
convolutional layers, two max-pooling layers, two batch
normalization layers, a flattening layer and a sigmoid output
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Fig. 2. The convolutional neural network structure for the
baseline AED system.

layer. The first layer performs a convolution over the input
acoustic features with 16 kernels characterized by 3 by 3. The
second convolutional layer is the same as the first one except
that the number of kernels is set to 32 in order to obtain
a higher level representation. The sub-sampling operation
is performed and max-pooling operations is done over the
entire sequence length. In both convolutional layers, the Relu
[17] activation function is used for the kernels. As there
may be more than one acoustic event happening at the same
time index, a sigmoid layer composed of N fully-connected
neurons is used. The binary cross entropy is adopted as
the loss function in training and the Adam [18] is used to
optimize the network weights.

In testing, the audio signal is represented by the log-
mel energies. Then the representations are fed to the trained
model and the model outputs a probability pc(t) for each
event class c at frame index t. A global threshold is applied
to determine the active acoustic events at each frame. If the
output probability pc(t) is higher than the global threshold,
then the event class c is detected as active. Otherwise, the
event class c is regarded as inactive at the current frame t.
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3. CONFIDENCE BASED ACOUSTIC EVENT
DETECTION

3.1. Confidence

Two acoustic events, both when overlapped and when not
overlapped, are taken as an example to show how the
confidences are calculated. As shown in Fig. 3, the red and
blue lines denote different acoustic events. The rectangular
solid boxes denote the manually labeled boundaries of the
acoustic events and the dotted parabolic lines denote the
corresponding confidence for each frame. The LB and LE
are the manually labeled onset and offset time for the acoustic
event respectively. However, the actual happening time for
the acoustic event may be different from the LB and LE due
to the labeling inaccuracy caused by the limitations of human
annotation at the frame level. To deal with this, we assume
a soft boundary with different confidences. The closer the
current frame is to the centre of the manually labeled acoustic
event, the higher the confidence will be. The V B and V E
denote the virtual onset and offset time respectively.

The confidence curve represented by the dotted line for
a specific acoustic event in Fig. 3, with LB and LE as the
manually labeled boundaries, can be expressed as:

p(t) = (1− (1− v)(
2t− LB − LE

(LE − LB)
)2)f(t) (2)

where f(t) is defined as:

f(t) =

{
1 (V B <= t <= V E)

0 (otherwise)
(3)

To get different parabolic functions for acoustic events
with different durations, the confidence at the manually
labeled boundaries are fixed to v, which can be expressed
as:

v = p(t = LB) = p(t = LE) (4)

In this paper, the v is experimentally set to 0.3.
Based on the Eq. (2), the onset V B and offset V E can

be obtained when the confidence becomes 0 (p(t) = 0). Given
the maximum frame number L of one audio file, the V B and
V E can be expressed as:

V B = max{0,
LE + LB − (LE − LB) 1√

1−v

2
} (5)

V E = min{L,
LE + LB + (LE − LB) 1√

1−v

2
} (6)

3.2. Confidence Regression

After the confidences are assigned to different frames, the
training outputs are real-valued variables rather discrete-
valued labels. For each training frame, the corresponding
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Fig. 3. Confidence for different frame indexes.

output is a continuous representation for each acoustic event
type. The training output at frame k is expressed as:

Pk = {pk,1, pk,2, ..., pk,N} (7)

where pk,n (n ∈ {1, 2, ..., N}) is the confidence at the frame
k for the nth event class.

The same CNN framework and configurations have been
adopted as in the benchmark system introduced in Section 2
except that the binary cross entropy loss function be replaced
by the mean squared error E expressed as:

E =
1

K

k=K∑
k=1

n=N∑
n=1

(pk,n − p̂k,n)
2 (8)

where K is the total number of the training samples, pk,n is
the confidence and p̂k,n is the predicted probability for the
nth class at the frame index k respectively.

During testing, a global threshold is applied to the
predicted probability p̂k,n to determine the final active
acoustic events. In this paper, the global threshold is set to
0.5 as in [19].

4. EXPERIMENTAL RESULTS

4.1. Database

The TUT sound event 2017 database [20] is used to evaluate
the performance of different systems. The recordings are
carried out in a street environment and recorded at 44.1kHz
sampling rate and 24 bit resolution. The annotators were
instructed to annotate the audio signals with start time and
end time. The detailed description of the data recording and
annotation procedure can be found in [20].

For the acoustic event detection task in the database, the
selected 6 target acoustic event classes are: “brake squeak-
ing”, “car”, “children”, “large vehicle”, “people speaking”
and “people walking”.

4.2. Evaluation metrics

The segment-based error rate and F-score are used to evaluate
the different AED systems. The segment-based error rate and
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F-score are calculated with respect to a segment. In this paper,
the duration for the evaluation segment is set to 100ms. A
lower error rate or a higher F-score indicates a better AED
system. Detailed definitions about the error rate and F-score
are described in [21].

4.3. Experimental results and analysis

To demonstrate the effectiveness of the proposed regression
based acoustic event detection method using the confidence,
different systems including the DCASE 2017 task3 baseline
system [19] are constructed for comparison.

To begin with, a multi-layer perceptron with two layers,
each with 50 units, is used to construct the multi-class
classification and regression based acoustic event detection
systems respectively. These two systems are named as MLP-
C and MLP-R in this paper. An average of 0.69 error rate and
56.15% F-score are achieved for the MLP-C. For the MLP-R,
the average error rate decreased by 5% to 0.64 and the F-score
increased to 60.14%, which proves the effectiveness of the
confidence based AED system.

To further demonstrate the effectiveness of the proposed

Table 1. Error rates (ER) and F-scores for the different AED
systems on the development dataset.

System ER F-score
DCASE Task3 Baseline[19] 0.69 56.70%
MLP-C[16] 0.69 56.15%
CNN-C[16] 0.67 56.17%
MLP-R 0.64 60.14%
CNN-R 0.63 61.02%

method, the CNN based framework, as introduced in Section
2, is used to perform the multi-label classification and
confidence regression respectively. Similarly, we name the
CNN based AED systems as CNN-C and CNN-R respectively.
An average of 0.67 error rate and 56.17% F-score are
achieved for CNN-C. For CNN-R, the average error rate and
the F-score are 0.63 and 61.02% respectively. Detailed results
for the multi-label classification and confidence regression
based approaches on the development dataset are shown in
Table 1.

Table 2 shows the detection results on the DCASE 2017
Challenge Task 3 evaluation dataset. As shown in the Table
2, the detection accuracy slightly increased and the error
decreased to 0.87 and 0.84 when the confidence measure is
applied to DNN and CNN respectively.

As can be seen in Table 1 and Table 2, the confidence
regression based method has a lower error rate and a higher
F-score than the multi-label classification based approach.
This can be explained by observing that the soft boundary
based confidence can be more tolerant to the manually
labelling inaccuracy at the event boundaries. Furthermore,

Table 2. Error rates (ER) and F-scores for the different AED
systems on the evaluation dataset.

System ER F-score
DCASE Task3 Baseline[19] 0.94 42.8%
MLP-C 0.95 43.5%
CNN-C 0.94 41.1%
MLP-R 0.87 43.8%
CNN-R 0.84 45.3%

the confidence is positively correlated with the centre of
the manually labeled acoustic events, which makes the
confidence contains not only capture the acoustic event
type information but also the acoustic event localisation
information.

5. CONCLUSION AND FUTURE WORK

This paper proposed a confidence concept and the regression
based acoustic event detection approach. The hard boundary
is replaced by a soft boundary and a confidence is assigned
to each frame, which makes the regressor more tolerant to
manually labeled data and be able to utilize not only the
acoustic event type but also the acoustic event localisation
information. Experimental results demonstrate the superior
performance of the proposed approach. How to train a joint
model regarding the binary label and continuous confidence
will be our future research direction.

6. ACKNOWLEDGMENT

This work was supported by the International Postgraduate
Research Scholarship (IPRS) from the University of Western
Australia. We gratefully acknowledge the support of NVIDIA
Corporation with the donation of the Tesla K40 GPU used for
this research.

309



7. REFERENCES
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