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ABSTRACT

Real-time detection of verbal protest (sensory overload-
induced crying) in children with autism is a first step towards
understanding the precursors of challenging behaviors asso-
ciated with autism. Detection of verbal protest is useful for
both autism researchers interested in exploring just-in-time
intervention techniques and researchers interested in audio
event detection in routine living environments.In this paper,
we examine, adapt, and improve upon two techniques for
verbal protest recognition and tailor them for children with
autism spectrum disorder (ASD). The first technique inves-
tigated is a Gaussian Mixture Model (GMM) with stacking.
The second technique uses Convolutional Neural Networks
(CNN) trained on log Mel-filter banks (LMFB). We proceed
to examine accuracy with a focus on real-world false pos-
itive rates and minimization of dataset biases through the
introduction of noise and input perturbation.

Index Terms— Audio Event Detection, Convolutional
Neural Networks, Gaussian Mixture Model, Ubiquitous
Computing

1. INTRODUCTION

According to the Centers for Disease Control and Prevention
(CDC), the cases of autism have increased by a factor of 10
since 1980. Children with autism display challenging be-
haviors, such as verbal protest which we define as sensory
overload-induced crying, screaming, shouting, and yelling.
Detection of verbal protest will help us understand the fre-
quency and context in which these challenging behaviors oc-
cur, allowing for better prediction and prevention, thereby re-
ducing the burden on both the children and the parents in-
volved.

In this paper, we propose methods for exploring and de-
tecting sensory overload-induced verbal protest in children
with autism in the presence of confounding sounds, such as
noise, and speech. We demonstrate GMM and CNN based
machine learning and feature extraction techniques capable
of detecting verbal protest with low false positive rates. We
also demonstrate the ability of the resulting models to gen-
eralize across children from different age groups, in spite of
the differences in gender, vocal capabilities, and vocal prop-
erties. Finally, we discuss the capability of the system to
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function in a variety of environments, from wearable devices
and smartphones to cloud ecosystems. In the case of verbal
protest, this flexibility will allow for real-time assessment and
reactive Just-In-Time Intervention (JITI) by a caregiver. The
primary contributions of this paper are 1) the curation of a
dataset for studying verbal protest in autism, 2) a technique
for leveraging observer-reported behavioral data via voluntary
contributions on YouTube, 3) development of efficient detec-
tion models which can run in both embedded and cloud en-
vironments, 4) techniques for enhancing noise tolerance and
reducing false positives, and 5) a model which detects verbal
protests. To the best of our knowledge, this is the first work
which presents a model to detect verbal protests in children
with autism.

Section 2 explores prior related works on audio event
recognition. Section 3 explains the datasets used for training
and validation. Section 4 examines the feature extraction
techniques used. Section 5 focuses on the GMM based ap-
proach, while Section 6 focuses on the CNN based approach.
Section 7 reports findings, and Section 8 concludes the work.

2. RELATED WORK

Audio event detection has become increasingly popular due
to the recent progress in ubiquitous computing with new tech-
niques for data acquisition, model development, and interest-
ing applications. Techniques for the detection of shouting,
crying, and audio events are explored in [1, 2, 3, 4, 5, 6].
Prior work by Takahashi et al., [2], and by Salamon et al., [3]
focused on the more general audio event or environment clas-
sification. Both of these works use deep learning techniques
and combat the issue of data scarcity with data augmentation.
As reported in [3], audio data augmentation helps generalize
the resulting models, such that performance improves across
unobserved data. Multiple instance learning was also shown
to be an effective technique on these augmented datasets
[2]. Specialized mel frequency cepstral coefficient (MFCC)
feature-based Gaussian mixture models (GMMs) have been
proven to perform well in shout detection despite the moder-
ately noisy environments [4], and other representations such
as Log Mel-filter bank responses have shown that deep learn-
ing applied to audio can distinguish between a baby’s cry and
confounding domestic sounds [1]. These prior approaches,
however, were evaluated individually and used speech sam-
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ples from children who were not on the autism spectrum.
We leverage these techniques from the prior work in audio
event detection, data augmentation, and machine learning,
and propose a new model that is tuned to detect verbal protest
for children on the autism spectrum.

3. DATA DESCRIPTION

To the best of our knowledge, no publicly-available dataset
exists, featuring children with autism having meltdowns (be-
havioral outbursts). In order to study verbal protest in chil-
dren with autism, we curated a dataset by collecting suitable
YouTube recordings found via search strings related to autism
challenging behaviors (e.g., “autism children shouting”). We
download the relevant videos which contain episodes of chil-
dren with autism having a verbal protest, as tagged by the
uploader. This set contains videos from seven children aged
between two and twelve years. Next, we extract the audio and
employ an annotator to code the sound with the tags “verbal
protest,” “noise,” or “speech.” Here, noise and speech rep-
resented the events of daily life in contrast to the sounds of
children with autism during a verbal protest. Then, we set
aside approximately 15% of the 10 minutes of resulting anno-
tated speech to test the generalizability of the model. Given
the small dataset size, we also apply data augmentation tech-
niques [2, 3] which have been successfully applied to acous-
tic event detection and sound classification problems. These
techniques, which includes pitch shifting, time stretching, and
dynamic range compression, increased the dataset size to 51
minutes and improved model robustness. To train the model,
we also use the RML dataset [7] that contains confounding
emotional speech (e.g., fear) from eight subjects in six differ-
ent languages. Lastly, we use the Urban Sound dataset [8]
to introduce noise in the training dataset to limit bias in the
audio samples.

Two independent datasets are also used to validate the ver-
bal protest detection model. First, we use a smartwatch to col-
lect 105 minutes of audio in the noisy natural environment,
such as riding a subway and walking around the city. This
dataset provides us with a baseline for false positive rates in
the free-living (natural environment) condition. Second, we
use an independent “Audio Set” dataset [9] containing 527 on-
tology class labels. We select 18 classes under four high-level
categories — child, adult, vehicle, and environment (see Figure
5 for a detailed breakdown). Audio segments are 10-second-
long each containing one or more ontology-based class labels.
This dataset contains many examples of audio events, which
simulates a wide range of acoustic confounds present in our
day-to-day life.

4. FEATURES

The audio streams, sampled at 44.1 kHz, are segmented into
25 ms windows with a 10 ms step. These 25 ms frames are
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Fig. 1. Histogram of relative log-likelihood scores obtained
from the GMM model. The Left distribution represents non-
verbal-protest and the right represents verbal-protest.

then used as stationary representations of the incoming sig-
nal. We extract 34 features from each frame, including 24
Mel-Frequency Cepstrum Coefficients (MFCC), Zero Cross-
ing Rate (ZCR), spectral roll-off, spectral centroid, and spec-
tral contrast. MFCCs are a staple of speech processing, well-
suited to tasks of vocal differentiation as they imitate human
perception. MFCC-based features also have been proven very
useful in shouted speech detection in the presence of ambient
noise [4]. Because of the variety of sonic backgrounds that
this system is likely to encounter in actual use, we also ex-
tract features likely to differentiate confounding audio events,
such as music and other noise. ZCR, roll off, centroid, and
contrast proved useful in making these distinctions.

5. MODELING APPROACH 1: GAUSSIAN MIXTURE
MODEL (GMM)

Gaussian mixture model (GMM) techniques traditionally op-
erate in an unsupervised manner under the assumption that
data has been generated from one or more normal distribu-
tions. In a closely-related prior work [4], the “shout” audio
event had been detected based on the relative likelihood
metric computed from Lgpnous — Max(Lspeech, LNoise)s
where shout, speech, and noise each had a separate, eight-
component GMM. We extend this work by making three
changes. First, we use two additional confounding classes,
i.e., the music and the emotional speech samples obtained
from the RML database. In addition, we fit two compo-
nent GMMs for each of the five classes. The Relative Log
Likelihood (RLL) score of verbal protest is computed as

LVerbalProtest_max(LSpeecha LNoisea LMusica LE'motionalSpeech)-

Third, we compute the RLL scores for all five classes and
make a union of them. These RLL scores are fitted into a
one-dimensional space and used to train a two-component
GMM. This allows us to make predictions by setting an
interpretable probability-like threshold instead of setting a
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Fig. 2. The spectral images passed to our CNN. Differences in
verbal protest and speech are most apparent when examining
closeness and continuity of formants. Noise does not have the
spectral lines created by formants, thus easily distinguishable.

domain-specific threshold, effectively making the GMMs
into high-level feature extractors (see Figure 1). Figure 1
shows that two-component GMM models can distinguish the
verbal protest and the non-verbal protest classes.

6. MODELING APPROACH 2: CONVOLUTIONAL
NEURAL NETWORK(CNN)

CNNss have been shown to perform well on classification and
recognition tasks. In this work, we apply CNNs to “spec-
trogram images”. To prepare an audio stream for the CNN,
we again segment data into 25 ms frames with a 10 ms slide.
From each of these frames, a set of 40 LMFB activations were
extracted. 28 consecutive frames are then concatenated to
form a 40 by 28 “picture”. The difference between a typi-
cal MFCC and LMFB is that no DCT or other decorrelation
step is performed. Correlation is quite helpful for CNNs [1].

Figure 2 shows typical verbal protest, speech, and noise
LMFBs pictures. The short spectral lines indicate the most
interesting information. In the case of vocal sounds, these
lines are the formants. Verbal protest instances do not show
changes in formant location or grouping as often as speech
because speech requires constant vocal tract modification to
produce new sounds. We leverage this quality by using rel-
atively wide filters. Pooling is avoided in the shallow layers
to prevent information loss. This is made up for by having
two fully connected hidden layers. These architectural mod-
ifications build upon [1] by allowing the model to develop a
higher-level representation of the learned features. We use an
Adam optimizer [10] with standard categorical cross-entropy
as the loss function. Additionally, dropouts are employed to
prevent overfitting and dead zones within the network. The
architecture is shown graphically in Figure 3.

Model Interpretation: Neural network-based techniques
are promising and have high accuracy across multiple do-
mains. However, unlike previous statistical methods, they
do not provide visibility into the hidden structure within the
network; and analysis of information inside the hidden lay-
ers is difficult. To overcome this to an extent, Local Inter-
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Fig. 4. Three example spectrograms with LIME overlay
showing the regions of the image contributed to the final class
label. Note that the regions of the spectrogram examined are
unique across all three pictures.

pretable Model-Agnostic Explanations (LIME) from [11] is
used. LIME perturbs the input data with the intent to reveal
what sections of the input caused the given classification (and
uncover the inner workings of the classifier). LIME lends it-
self to image, tabular, and text data very well; however, we
tailored it for spectral images. Figure 4 shows three LMFB
images of verbal protest from the same child where red zones
contribute positively to the verbal protest class. The deter-
mining regions are not temporally or spectrally constant, sug-
gesting the model did not learn potential bias in the dataset.

Training Perturbation: Finally, to limit the model from
learning potential bias within the dataset, we select 20 noises
from the Urban Sound dataset and randomly mix them into
our training sets. Table 1 shows accuracy, precision, and re-
call for this model.

7. RESULTS

Table 2 compares accuracy among the naive GMM (GMM-
N), the exposed GMM (GMM-E), the naive CNN (CNN-N),
and the exposed CNN (CNN-E) models. Exposed models are
exposed to a small proportion (2.5%) of external noise data
prior to testing (e.g., noise captured from the subway). The
evaluation does not use any data from the training dataset. As
discussed earlier “Intra-Group” means both training and test-
ing is performed on children from same age group. “Inter-
Group” refers to training on the younger children (<6) and
testing on the older. As expected, Intra-Group outperforms
Inter-Group for both GMM and CNN based models. Surpris-
ingly, GMM performs better for the Intra-Group setting, and
CNN performs better for the Inter-Group setting.



Table 1. Performance of the model on the perturbed dataset.
Intra-Group referred to as training and testing both in same
age group (<6)

Accuracy | Precision | Recall
Intra-Group | .868 .881 .832
Inter-Group | .713 706 760

Table 2. Comparison of performance using GMM and CNN-
based models. N stands for the naive model and E stands
for the exposed model. During the training phase, the ex-
posed model includes a small fraction of additional confound-
ing data, such as noise captured in the subway. A, P, and R
are accuracy, precision, and recall, respectively.

Intra-Group Inter-Group
A P R A P R
GMM-N | 933 | 916 | .967 | .690 | .741 | .780
GMM-E | 930 | 913 | .950 | .643 | .726 | .699
CNN-N | 901 | .929 | 834 | 722 | .817 | .617
CNN-E | .880 | .927 | .808 | .710 | .896 | .515

The model is designed to run on ubiquitous devices which
listen to audio in the environment and provide just-in-time
intervention by suggesting an advisory message to the care-
giver. Frequent false positive inferences would unnecessar-
ily burden the caregiver. We apply four models (see Table
2) on 105 minutes of audio captured from a smartwatch in
a noisy environment (e.g., subway). A wearable computing
device such as a smartwatch allows for auditory processing
within close proximity to the user. This is important to ensure
that the foreground auditory signal is that of the primary user,
while also creating the potential for continuous reinforcement
learning by utilizing the constant stream of audio data. GMM-
N and CNN-N provide false positive rates of 0.100 and 0.367,
respectively. Exposed GMM-E and CNN-E provided lower
false positives rates of 0.003 and 0.007, respectively. Next,
we consider an ensemble model of GMM-E and CNN-E. We
observe that in the majority of the cases, false positives were
one or two windows long. Hand-curated training data sug-
gest that the minimum duration of a child’s verbal protest is
0.3 seconds. Therefore, we define an ensemble verbal protest
as an episode of 0.3 second, where both models inferred ver-
bal protest in 90% of the frames. As expected, the ensemble
model reduces the false positive rate to 0.001.

Next, we evaluate the ensemble model on Audio Set.
Table 5 shows the proportion of videos classified as verbal
protest in each class. We further categorize the labels into log-
ical sections — Child, Adult, Vehicle, and Environment. Most
of the classes in the Child and Adult sections closely resemble
the verbal protest category and we observe a higher propor-
tion of videos labeled as containing verbal protest episodes.
In the Vehicle and Environment sections, we observe a lower
percentage of videos labeled as having verbal protest.
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Fig. 5. Ensemble model-based predictions on 18 classes of
Audio Set dataset. 83.9% of children shouting videos are in-
ferred as containing verbal protest.

8. CONCLUSION AND FUTURE WORK

Statistical and neural network based approaches for verbal
protest recognition present a set of trade-offs. GMMs can be
particularly lightweight, because in the case of a diagonal co-
variance matrix, they will only require limited memory to be
stored. However, CNNs provide significantly improved per-
formance at the cost of resources. Despite the larger storage
and computational burden of CNNs, we believe that ensemble
models are the superior choice for solving this class of prob-
lems. This proposed system can eventually help the health-
care providers to understand the frequency and patterns of
challenging behaviors. In the future, multiple instance learn-
ing on weakly-labeled data (e.g., tags) can reduce the depen-
dency on manual annotation and improve the scalability of the
system. In addition, we would like to add more confounding
examples, such as non-autistic child crying or shouting in the
training data.
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