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ABSTRACT

State-of-the-art silent speech interface systems apply vocoders
to generate the speech signal directly from articulatory data.
Most of these approaches concentrate on estimating just the
spectral features of the vocoder, and use the original F0, a
constant F0 or white noise as excitation. This solution is
based on the assumption that the F0 curve is unpredictable
from articulatory data that does not contain direct measure-
ments of the vocal fold vibration. Here, we experimented
with deep neural networks to perform articulatory-to-acoustic
conversion from ultrasound images, with an emphasis on
estimating the voicing feature and the F0 curve from the
ultrasound input. Contrary to the common belief that F0 is
unpredictable, we attained a correlation rate of 0.74 between
the original and the predicted F0 curve. What is more, the
listening tests revealed that our subjects could not distinguish
the sentences synthesized using the DNN-estimated and the
original F0 curve, and ranked them as having the same qual-
ity.

Index Terms— Silent speech interface, articulatory-to-
acoustic mapping, DNN, fundamental frequency

1. INTRODUCTION

During the last decade, there has been a significant interest
in articulatory-to-acoustic conversion, which is often referred
to as “Silent Speech Interfaces” (SSI) [1]. Here the main
idea is to record the soundless articulatory movement (e.g.
tongue and/or lips), and automatically generate speech from
the movement information, without the subject actually pro-
ducing any sound. Such SSI systems can be highly useful
for the speaking impaired (e.g. after laryngectomy), and for
scenarios where regular speech is not feasible but information
should be transmitted from the speaker (e.g. extremely noisy
environments; military applications). For this automatic con-

version task, typically ultrasound tongue imaging (UTI) [2, 3,
4, 5, 6], electromagnetic articulography (EMA) [7, 8], perma-
nent magnetic articulography (PMA) [9], electromyography
(EMG) [10] or multimodal approaches [11] are employed.

State-of-the-art SSI systems use the ‘direct synthesis’
principle, where the speech signal is generated directly from
the articulatory data, using vocoders [3, 4, 5, 8, 9]. Most of
these approaches focus on predicting just the spectral features
of the vocoder (e.g. Mel-Generalized Cepstrum, MGC). The
reason for this is that while there is a direct relation between
tongue movement and the spectral content of speech, the F0
value depends on the vocal fold vibration, which has no direct
connection with the movement of the tongue and face or the
opening of the lips [12]. However, there is some evidence
that tongue shapes differ in the case of voiced and unvoiced
sounds; for example, the vibration of the vocal folds may
slow down during consonant articulation [13]. Along with
other factors, these changes correlate with the specific artic-
ulatory configuration of the obstruents; that is, the volume
of space between the glottis and the obstacle [14]. In spite
of these facts, most authors studying SSI systems take the
unpredictability of F0 for granted, and use the original F0, a
constant F0 or white noise as excitation.

Only a few studies attempted to predict the voicing fea-
ture and the F0 curve using articulatory data as input. Naka-
mura et al. utilized EMG data, and they divided the problem
into two steps. First, they used an SVM for voiced/unvoiced
(V/U) discrimination, and in the second step they applied a
GMM for generating the F0 values. According to their re-
sults, EMG-to-F0 estimation achieved a correlation of 0.5,
while the V/U decision accuracy was 84% [10]. Hueber et al.
experimented with predicting the V/U parameter along with
the spectral features of a vocoder, using ultrasound and lip
video as input articulatory data. They applied a feed-forward
deep neural network (DNN) for the V/U prediction and at-
tained an accuracy score of 82%, which is very similar to the
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result of Nakamura et al. As the input data contained no direct
measurements of vocal fold vibration, they explained this rel-
atively high performance by indirect relationships (e.g. stable
vocal tract configurations are likely to correspond to vowels
and thus to voiced frames) [3].

Two recent studies experimented with EMA-to-F0 predic-
tion. Liu et al. compared DNN, RNN and LSTM neural net-
works for the prediction of the V/U flag and voicing. They
found that the strategy of cascaded prediction, namely us-
ing the predicted spectral features as auxiliary input increases
the accuracy of excitation feature prediction [15]. Zhao et al.
found that the velocity and acceleration of EMA movements
are effective in articulatory-to-F0 prediction, and that LSTMs
perform better than DNNs in this task. Although their objec-
tive F0 prediction scores were promising, they did not evalu-
ate their system in human listening tests [16].

The above brief summary of the related work tells us that
although there has been some research on articulatory-to-F0
prediction, deep learning experiments for estimating the F0
curve from tongue ultrasound images alone are still lacking.
In a previous study, we presented our results for DNN-based
articulatory-to-acoustic mapping from ultrasound images [6].
There, similar to other authors, we assumed that F0 cannot be
estimated from ultrasound data, so we used the F0 curves ex-
tracted from the original recordings. However, it is clear that
for a fully operable SSI system the problem of F0 estimation
also has to be solved. Here, we extended our experiments
with the estimation of the voicing feature and the actual F0
values. Just like Nakamura et al., we applied a 2-stage ap-
proach where one machine learning model seeks to estimate
the voicing feature, while another one seeks to predict the F0
value for voiced frames [10]. However, in contrast with their
study, we applied DNNs for both tasks. Furthermore, while
they worked with EMG signals, in our case the input articula-
tory representation is ultrasound, which contains no informa-
tion directly related to vocal fold vibration. We evaluate our
approach on ultrasound recordings collected from one female
subject. In the experiments we attained a correlation rate of
0.74 between the original and the predicted F0 curve. What is
more, in subjective listening tests we found that our subjects
could not distinguish between the sentences synthesized us-
ing the DNN-estimated or the original F0 curve, and ranked
them as having the same quality.

2. EXPERIMENTAL SET-UP

The speech of one Hungarian female subject (42 years old)
with normal speaking abilities was recorded while reading
sentences aloud (altogether 438 sentences). The sentences
were divided into three distinct sets, 310 were selected for the
training set, 41 for the development set and 87 for the test set.
The tongue movement was recorded in midsagittal orienta-
tion using the “Micro” ultrasound system of Articulate Instru-
ments Ltd. at 82 fps. The speech signal was recorded with an

Audio-Technica - ATR 3350 omnidirectional condenser mi-
crophone. The ultrasound data and the audio signals were
synchronized using the tools provided by Articulate Instru-
ments Ltd. In the experiments below, the raw scanline data
of the ultrasound was used as input data for the DNNs. The
images were reduced to 64×119 pixels (for details see [6]).

2.1. Preprocesing and Synthesis

We applied the SPTK vocoder for the analysis and synthe-
sis of speech (http://sp-tk.sourceforge.net). The speech signal
was lowpass filtered and resampled to 11 050 Hz. The F0
curve was extracted with the SWIPE algorithm [17]. We ex-
tracted 12 MGC-LSP features along with the gain, which re-
sulted in a 13-dimensional feature vector. This vector served
as the training target during DNN training. In the synthesis
phase, we replaced all parameters required by the synthetizer
by the estimates produced by the DNN. The vocoder gener-
ated an impulse-noise excitation according to the F0 param-
eter, and applied spectral filtering using the MGC-LSP coef-
ficients and a Mel-Generalized Log Spectral Approximation
(MGLSA) filter [18] to reconstruct the speech signal.

2.2. DNNs for the Estimation of Fundamental Frequency

Estimating the fundamental frequency from the ultrasound
movies of the tongue movement alone is a difficult task. Sim-
ilar to the study of Nakamura et al [10], our system consists
of two major machine learning components, one dedicated to
making the voiced/unvoiced decision, while the role of the
second was to estimate the actual F0 value for voiced frames.
In contrast to Nakamura et al., we used DNNs for both tasks.
The first task, V/U decision for each frame has a binary out-
put, hence we treated it as a classification task. While work-
ing on the same input images, the second DNN seeks to learn
the F0 curve. As the F0 estimate takes continuous values, we
viewed this task as a regression problem, and we trained this
second network just using the voiced segments from the train-
ing data. During the evaluation (synthesis) step, the outputs
of the two DNNs are merged. This is achieved by simply tak-
ing the output value of the F0 predictor network where the
voicing network decided in favour of voicing, and returning a
constant value for frames judged to be unvoiced.

In the past few years Convolutional Neural Networks
(CNNs) have become the state-of-the-art architecture in im-
age processing. Yet, in this study we used a simple fully
connected network structure for two reasons. First, CNNs
have the biggest advantages for images that are rich in lo-
cal details that build up the picture in a hierarchical manner.
Here, however, the input image contains just a few objects
(i.e. the tongue, the shadow of the jaw and the hyoid bone),
and the resolution is rather low. Second, the pooling step
of CNNs loses the precise spatial relationship between these
objects, which might worsen the performance of the network
in our case. Therefore we opted for a simple fully connected
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Development Test
Input Voiced accuracy NMSE Correlation Voiced accuracy NMSE Correlation
Baseline (1 frames) 86.1% 0.562 0.719 85.7% 0.577 0.711
5 frames 88.2% 0.476 0.760 87.2% 0.516 0.742
17 frames + feature selection 87.4% 0.506 0.747 86.9% 0.526 0.736

Table 1. F0 prediction performance of the DNNs for the various feature sets

structure with five hidden layers of 1000 ReLU neurons. We
predicted the F0 parameter together with the gain and the 12
LSP parameters, as in pilot tests we got slightly better results
this way than training separate networks for each parameter.
This DNN contained 14 linear neurons in its output layer.
The network trained for the binary U/V decision task had the
same structure, but with a binary classification output layer.

2.3. Input Representation

In our previous study we performed several experiments to
seek the optimal input representation. Here, we used only the
representation methods that proved the best in that work [6].
Both the V/U decision network and the spectral+F0 param-
eter estimation network used the same input representation.
In the case of the baseline DNN (called Baseline later), only
one frame of the ultrasound movie was used as input to the
neural network. Then, to improve the performance, we also
extended the input vector of the DNN to contain 5 consecu-
tive images (this model will be called 5-frames). However,
this simple solution significantly increased the size of the in-
put vector, thus slowing down the training and synthesizing
process. Hence, we applied a correlation-based feature selec-
tion method [6] to reduce each image to 20% of its original
size. This allowed us to use a larger left-right context of 8-8
frames, while keeping the network size relatively small. This
solution will be called 17-frames+fs. For more details on the
feature selection experiments see our previous study [6].

To evaluate the best F0 predicting system (5-frames) via
subjective listening tests, we synthesized sentences using
three different F0 curves. To have a baseline, we synthe-
sized sentences using a constant F0, where the V/U network
predicted the voicing of the actual frame. This system is la-
beled F0-const in the figures. To have an upper glass ceiling,
we also synthetized sentences using the original F0 curve
(F0-orig in the figures). Lastly, the system that applied the
DNN-predicted F0 curve is called F0-DNN in the following.

3. RESULTS AND DISCUSSION

3.1. Objective Evaluation

Similar to our previous study, we used the Normalized Mean
Square Error (NMSE) and the Pearson correlation to objec-
tively measure the quality of our DNN-based estimates [6].
Table 1 lists the results we obtained with the various input
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Fig. 1. An example of the F0 prediction produced by our
system, compared to the original F0 curve.

representation approaches outlined in the previous section.
All the networks achieved quite good V/U accuracy scores,
and the best F0 estimation model gave a correlation scores of
0.74. Figure 1 shows an example of the F0 prediction pro-
duced by our system, compared to the original F0 curve. It
illustrates that our DNNs performed reasonably well in pre-
dicting the F0 from ultrasound articulatory data alone.

3.2. Subjective listening tests

In order to find out which proposed model sounds the closest
to natural speech, we conducted an online MUSHRA (MUlti-
Stimulus test with Hidden Reference and Anchor) listening
test [19]. The advantage of MUSHRA is that it allows the
evaluation of multiple samples in a single trial without break-
ing the task into many pairwise comparisons. Our aim was
to compare natural and vocoded sentences with the synthe-
sized sentences using DNN-predicted features. The vocoded
reference sentences were synthesized applying impulse-noise
excitation using the original F0 and MGC of the signals. We
also used an anchor sentence, which had constant F0 and
a distorted version of the original MGC features. Ten sen-
tences were selected for the test, which were not included
in the training database. Here, the test had two aims. First,
we sought to compare the various input representation ap-
proaches, and second, we attempted to evaluate the influence
of the accuracy of the predicted F0 contour on speech quality.
This is why the test was broken down into two sub-tests. In
sub-test #1, the Baseline, 17-frames+fs, and 5-frames input
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Fig. 2. Results of the listening test for the comparison of the
input representation approaches.

representation strategies were compared, whereas with sub-
test #2 we compared the F0-const, F0-DNN, and F0-orig vari-
ants of F0 prediction. All of the ten sentences, and all of the
sentence variants (6 variants in each case) appeared in ran-
domized order (different for each listener). In the MUSHRA
test the listeners had to rate the naturalness of each stimulus
relative to the reference (which was the natural sentence), on
a scale from 0 (highly unnatural) to 100 (highly natural).

3.2.1. Results of the Listening Test

Altogether 24 listeners participated in the main test (13 fe-
males, 11 males). All of them were native speakers of Hun-
garian with no known hearing loss, and four of them were
speech experts. The subjects were between 18–74 years
(mean: 28 years). On the average, the whole test took 18
minutes to complete. The MUSHRA scores of the listening
test are presented in Fig. 2 for sub-test #1 and in Fig. 3 for
sub-test #2 (the errorbars showing the 95% confidence in-
tervals). In general, the ’natural’ sentences attained roughly
100% on the naturalness scale. The ’vocoded’ references
achieved naturalness scores around 60%, and the anchor
sentences were rated very low by the listeners. The three ut-
terance types where the features were predicted using DNNs
were ranked between 20–36% by the subjects, indicating that
they are roughly half-way between the vocoded references
and the anchor in terms of naturalness.

The rankings by the listeners were compared by using
Mann-Whitney-Wilcoxon ranksum tests as well, with a 95%
confidence level. In both sub-tests, the DNN-based synthetic
signals significantly differed from the natural, anchor, and
vocoded references. In sub-test #1, the 17-frames+fs and
5-frames strategies proved both significantly different from
Baseline, while their naturalness was not judged to be signif-
icantly different from each other. In sub-test #2, the F0-const
model ranked significantly lower than F0-DNN and F0-orig
and, most importantly, the scores of the latter two were not
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Fig. 3. Results of the listening test for the comparison of the
F0 prediction methods.

significantly different. This result tells us that the listeners
could not differentiate the synthetized sentences with DNN-
predicted F0 from those using the original F0 curve.

4. CONCLUSIONS

Here, we described our experiments for performing F0 esti-
mation in ultrasound-based articulatory-to-acoustic mapping.
We used two separate fully-connected DNNs to estimate the
voicing of the actual frame, and to predict the F0 for voiced
frames. Using objective evaluation metrics, we attained a cor-
relation rate of 0.74. According to our subjective listening
tests, the listeners ranked the synthesized sentences with the
original and the DNN-predicted F0 curves as being equally
natural. These findings justify that articulatory-to-F0 predic-
tion is promising, even if the input features (ultrasound data
in our case) do not contain direct measurements of the vocal
cord vibration. We worked with the voice of only one per-
son and we assume that this fact significantly contributed to
our good results. While we think that speaker-dependency
is not a drawback, as future SSI systems will inherently be
personalized, in the future we plan to repeat our experiments
with more speakers (both male and female) in the training
database. Also, while SSI systems should be able to cope
without the vibration of the vocal cords, here our subject was
a healthy person producing normal speech. Hence, it is also a
future task to evaluate the system with real silent speech.
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