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ABSTRACT

In biomedical acoustics, distortion in voice signals, commonly pre-
sent during acquisition and transmission, adversely affects acoustic
features extracted from pathological voice. Information on the type
of distortion can help in compensating for its effects. This paper
proposes a new approach to detecting four major types of commonly
encountered distortion in remote analysis of pathological voice, na-
mely background noise, reverberation, clipping and coding. In this
approach, by applying factor analysis to Gaussian mixture model
mean supervectors, distortions in variable-duration recordings are
modeled by fixed-length, low-dimensional channel vectors. Then,
linear discriminant analysis (LDA) is used to remove the remaining
nuisance effects in the channel vectors. Finally, two different clas-
sifiers, namely support vector machines and probabilistic LDA clas-
sify the different types of distortion. Experimental results obtained
using Parkinson’s voices, as an example of pathological voice, show
11.4% relative improvement in performance over systems which di-
rectly use acoustic features for distortion classification.

Index Terms— Distortion modeling, channel factors, PLDA,
SVM, remote pathological voice analysis.

1. INTRODUCTION

Smartphones, as ubiquitous and inexpensive devices with built-in,
high-quality microphones, are recently being considered as tools for
remote pathological voice analysis [1, 2]. Compared to voice sam-
ples recorded in a sound booth or other acoustically-controlled con-
ditions, recordings from smartphones in everyday environments are
subject to many types of linear and nonlinear distortion. The pre-
sence of distortion in signals affects acoustic features used for sub-
sequent biomedical applications, which not only diminishes perfor-
mance of voice pathologists in diagnosing voice disorders, but also
degrades the performance of algorithms designed to quantify me-
dical symptoms from the voice [3]. Thus, signal enhancement, or
selection of good quality segments of voice recordings seems an es-
sential pre-processing step in remote voice analysis. Information on
the type of distortion corrupting a signal can be used to inform the
choice of appropriate enhancement algorithms.

Several approaches to detect different types of distortion in voice
signals have been proposed, most of them focused on detecting a
single and specific type of distortion [4–8]. In [9], we proposed
a method to classify four major types of distortion in vowels, na-
mely background noise, reverberation, clipping and coding, directly
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from mel-frequency cepstral coefficients (MFCCs) extracted from
short time frames of speech signals. This approach was motivated
by the analysis of MFCC behavior under different distortion condi-
tions. We showed that different types and levels of distortion pre-
dictably modify the distribution of MFCCs. This method, however,
has two limitations. First, MFCCs are sensitive to any change in sig-
nal characteristics. This means that they encode not only distortion
in signals, which is beneficial for distortion classification, but also
other variability such as speaker, articulation and disorder resulting
in conflation of distortion with medical disorder. Second, while the
classification is performed at the frame-level, the distortion classifi-
cation decision is made by majority vote over all frames of a signal,
and the computation time increases with increasing signal length.

In this paper, we address these issues by modeling distortion
in variable duration recordings with fixed-length, low-dimensional
vectors that focus mostly on the type of distortion in signals. Since
distortion modifies the signal’s characteristics, we consider distorti-
ons as a source of channel variability in signals. Now, if we corrupt
clean pathological voices with various types and levels of distortion
and fit a Gaussian mixture model (GMM) to the acoustic features
extracted from each of the recordings, the GMM means convey in-
formation about speakers, distortions and disorders. Then, assuming
that the GMM means can be decomposed into two components, na-
mely a speaker-dependent component (including information about
the speaker), and a channel-dependent component (containing infor-
mation about channel such as distortion, articulation and disorder),
by applying a factor analysis (FA) technique to the GMM means
and estimating the channel factors, information about the channel
effects can be represented by fixed-length, low-dimensional vectors.
Finally, applying linear discriminant analysis projection removes ot-
her nuisance factors in the channel vectors and makes them more
suitable for distortion classification.

This study focuses on classification of distortions in sustained
vowels. Although running speech is known to convey information
about the speaker’s characteristics [10–14], sustained vowels are the
most widely-used signals for pathological voice analysis [15] for two
main reasons: first, sustained vowels highlight voice disorders since
most dysphonic speakers cannot generate steady, sustained vowel
sounds [16], and second, the confounding complexities of articu-
latory movement during running speech are largely avoided [17].
While there are an infinite number of possible levels, types and com-
binations of distortions in real scenarios, this study focuses on four
major types of distortion commonly present during acquisition or
transmission in remote voice analysis, aiming at a simplified appro-
ach to detecting the most dominant distortion in voice signals. This
would be useful in practical applications where it is important to se-
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lect an appropriate algorithm to enhance a distorted signal before
being inspected by a voice pathologist or being used as an input for
algorithms for biomedical acoustics applications.

2. SYSTEM DESCRIPTION

2.1. Problem Formulation

In this distortion classification problem, we are given a set of training
data, Str = {νj , dj}Jj=1, where νj denotes the jth recording and dj
denotes the distortion that has corrupted the signal. The goal is to es-
timate a classifier function so that for a signal not in the training data,
the probability of the estimated output being classified to the correct
class is maximized. For contrast, we consider two approaches to
solve this problem: purely nonparametric, in which the function is
directly approximated from acoustic features [9], and parametric ap-
proaches, in which variable-duration signals are first converted to
fixed-length vectors by estimating the parameters of a statistical mo-
del for acoustic features. Although nonparametric techniques are
conceptually simple compared to parametric methods, the computa-
tion time can dramatically increase if the signal duration increases.

2.2. Distortion Modeling

The first step in the approach converts variable-duration signals into
fixed-dimensional vectors suitable for classification. One possible
approach is to fit a GMM to acoustic features calculated from fra-
mes of a distorted signal such that the distortion in a signal can be
characterized by the parameters of the fitted GMM. A supervector
constructed by concatenation of the resulting GMM means can re-
present a single voice recording. However, due to lack of data, fitting
a separate GMM to a short recording cannot be performed reliably,
particularly in the case of GMMs with a high number of mixtures.
To overcome this problem, instead of fitting a separate GMM to each
recording, we first fit a GMM to the acoustic features of a large
amount of clean and distorted data. We call this GMM a univer-
sal background model (UBM). Then, parametric techniques using
maximum-a-posteriori adapt the UBM to the characteristics of the
recordings. Consider a UBM with the following likelihood function:

p(ρl|µ,Σ) =

C∑
c=1

πcp(ρl|µc,Σc) (1)

where ρl is the acoustic vector of dimension F at frame l, πc is the
mixture weight for the cth mixture component, p(ρl|µc,Σc) is a
Gaussian probability density function with mean µc and covariance
matrix Σc, and C is the number of mixture components. The pa-
rameters of the UBM are estimated on a large amount of clean and
distorted training data. Then, the GMM mean supervector of dimen-
sion CF × 1 is constructed for each recording by concatenation of
the adapted Gaussian means for that recording.

However, these supervectors are of a high dimensionality re-
sulting in high computational cost, and it is difficult to obtain a re-
liable model for classification when we have limited data. More-
over, besides distortion-specific characteristics, other nuisance fac-
tors such as speaker, disorder and articulation variability confound
this adaptation process. To tackle this problem, we try to model dif-
ferent sources of variability by applying a FA technique to the GMM
mean supervectors. In this case, if we corrupt the clean recordings
of a given speaker by different types and levels of distortion, we can
artificially produce channel variability in recordings of that speaker
due to distortions and then fit a GMM to each recording of the spea-
ker. Now, we can assume that the GMM mean supervector of the rth

recording from the sth speaker can be decomposed as [18]:

Ms,r = m+ V ys +Uxs,r +Dzs (2)

wherem is speaker- and channel-independent supervector obtained
by concatenation of UBM means, V (the rectangular matrix of low
rank, the “eigenvoice” matrix) defines a speaker subspace of dimen-
sion CF × Rs, vector ys is the speaker factors, U (the rectangular
matrix of low rank called the eigenchannel matrix) defines a sub-
space of dimension CF × Rc with high channel variability, vectors
xs,r are the channel factors which contain channel related informa-
tion, D is a diagonal matrix of dimension CF × CF describing
any remaining speaker variability not modelled by V , and vector zs
contains speaker-specific residual factors. The factors xs,r , ys and
zs are assumed to be independent of each other and have a standard
normal prior distribution. To estimate the matrices V , U and D,
we first train V , assuming that U and D are zero. Next, given the
estimate of V and assuming that D is zero, we estimate the “ei-
genchannel” matrix U . Then, given the estimates of V and U , we
estimate the residual matrix D. Finally, using the estimate of these
matrices, the speaker, channel and residual factors are calculated.

In this study, the FA framework is considered as a feature extrac-
tor to estimate the channel information in the channel factor, xs,r .
Therefore, we detail the process of estimating U and xs,r in the
next subsection. An efficient procedure for estimating all the other
parameters of the FA model can be found in [18].

Estimation of the Channel Factor and the Channel Subspace

The channel factorxs,r is a latent variable containing the channel in-
formation which is defined by the expected value of the posterior dis-
tribution conditioned to the Baum-Welch statistics (calculated using
the UBM) for a given recording. Given a sequence of L acoustic
frame vectors {ρ1, · · · ,ρl, · · · ,ρL}, the zero- and first-order sta-
tistics for each speaker s, recording r and mixture component c with
respect to the UBM are calculated respectively as:

Ns,r,c =

L∑
l=1

γc,l (3)

fs,r,c =

L∑
l=1

γc,l
[
ρl − (mc + Vcys)

]
(4)

where γc,l is the posterior probability of the cth mixture generating
the feature vector ρl, mc and Vc are respectively the subvector of
m and the submatrix of V associated with mixture component c. In
(4), the speaker shift, mc + Vcys, is weighted and subtracted from
the first order statistics to remove the speaker effects.

To train U and xs,r , we apply an EM algorithm. In the E-step,
using a random initialization of U , we first set

Ls = I +UTΣ−1NsU , (5)

where T represents matrix transpose, I is an F × F identity matrix,
Σ and Ns are CF × CF block-diagonal matrices with Σc’s and
(
∑

r Ns,r,c)I as their entries, respectively. Assuming a Gaussian
prior distribution, the posterior distribution of the channel factor is
also Gaussian xs,r ∼ N (µs,r,Λs,r) [19]. Let fs,r be the CF × 1
vector obtained by concatenating fs,r,c. The means and covariances
of this distribution for each recording are respectively calculated as:

µs,r = E[xs,r] = L−1
s UTΣ−1fs,r, (6)

Λs,r = E[xs,rx
T
s,r] = µs,rµ

T
s,r +L−1

s . (7)
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In the M-step, we set

Θc =
∑
s

∑
r

Ns,r,cΛs,r , c = 1, · · · , C, (8)

Ψ =
∑
s

∑
r

fs,rµT
s,r, (9)

where Θc is a matrix of dimension Rc × Rc and the dimension of
Ψ is CF × Rc. Then, for each mixture component c = 1, · · · , C
and for each f = 1, · · · , F , set i = (c− 1)F + f , U is updated by
solving the equations

UiΘc = Ψi, (10)

whereUi and Ψi are respectively the ith row ofU and Ψ. The EM
algorithm typically converges after tens of iterations [18].

The channel subspace U , which contains information about the
channel characteristics, is estimated over a large training dataset and
is used to extract the posterior mean of the channel factors, µs,r , for
each utterance in the training and test subsets using (6).

2.3. Channel Vector Pre-processing

Although the channel vectors are expected to model only channel
effects, particularly the distortions in signals, they contain other va-
riability [20] such as speaker and disorder effects. Therefore, the
remaining nuisance effects in channel space should be removed be-
fore being passed to the classifier. Our pre-processing steps include
centering followed by linear discriminant analysis (LDA) projection.
LDA projection is a powerful transformation technique to reduce the
dimensionality of multidimensional observations by finding new ort-
hogonal axes that minimize the within-class variance and maximize
the between-class variance [21]. In this case, each class includes
all the recordings corrupted by a specific type of distortion, and the
within-class variance is due to other factors than distortion such as
speaker or disorder effects. This supervised transformation techni-
que will enhance the class separability and reduce the dimensionality
of the channel vectors at the same time. Centering channel vectors
around the global mean of all training vectors, µ̄, followed by ap-
plying LDA results in a linearly transformed channel vector as:

φs,r = B(µs,r − µ̄) (11)

where B [21] is the LDA projection matrix estimated from the trai-
ning data, and then used to transform the test channel vectors.

2.4. Classifiers

The proposed distortion modeling approach is evaluated using two
different classifiers, namely the support vector machine (SVM)
and probabilistic linear discriminant analysis (PLDA). Introduced
by Vapnik and Cortes [22], the SVM is a discriminative classifier
which attempts to find the maximum margin separation hyper-plane
between two classes of data such that it generalizes well to the test
data. Although SVM is a binary classifier, an effective multi-class
extension based on a pairwise coupling strategy has also been de-
veloped [23]. In this study, we used the LIBSVM toolbox [24] to
implement a multiclass SVM with radial basis function kernel.

PLDA [25], originally studied in image processing, is a gene-
rative classifier. In the PLDA framework, the channel vector gene-
ration process is described in terms of latent variables, specifically
a distortion-dependent component and a residual component, by ap-
plying a FA. Then, given two channel vectorsφe andφt, the training
and the test channel vectors, the verification score in the PLDA fra-
mework is computed as:

Fig. 1: The block diagram of the proposed distortion classification
system in training and testing phases.

sPLDA =
P (φe,φt|Hs)

P (φe,φt|Hd)
(12)

where Hs is the same-distortion hypothesis and implies that both
channel vectors, φe andφt, originate from the same distortion class,
andHd is the different-distortion hypothesis, indicating that channel
vectors originate from different distortion classes. Given the Gaus-
sian assumption, a closed form solution for (12) is provided in [26].

2.5. Training and Testing

A block diagram of the proposed system is shown in Fig.1. In the
training phase, voice recordings in the training set are mapped to the
channel vectors and along with their corresponding distortion labels
are used to train the classifier. During the testing phase, the same
distortion modeling approach is used to extract a channel vector from
a test recording, and the distortion class is predicted using the trained
classifier.

3. EXPERIMENTAL SETUP

3.1. Database

The proposed system has been developed and validated using a PD
voice database since the vast majority of people with PD exhibit
some form of vocal disorder [27]. The database was generated
through collaboration between Sage Bionetworks, PatientsLikeMe
and Dr. Max Little as part of the Patient Voice Analysis1 study. The
samples are telephone recordings of the sustained vowels /a/ uttered
by 750 patients of both genders, sampled at 8 kHz and range from 3
s to 30 s long.

The voice recordings in the database are divided into non-
overlapping training and test subsets consisting of 80% and 20% of
the speakers, respectively. To create a database for distortion clas-
sification, we distorted all recordings by different types and levels
of distortion, typically present in the recordings of remote voice
analysis, and added them to the database. Specifically, for noise,
we used “babble”, “white Gaussian” and “office ambiance” noises
at 15 dB, 10 dB and 5 dB. For peak clipping, the clipping level was
set to 0.3, 0.4, 0.5 and 0.6. Signals were coded using 6.3 kbps, 9.6
kbps and 16 kbps CELP codecs. To provide reverberant signals,
recordings were filtered by 8 different real room impulse responses
of the AIR database measured with mock-up phone in hand-held and
hands-free positions in four realistic indoor environments, namely
an office, a lecture room, a corridor and a stairway [28]. Therefore,

1Obtained through Synapse ID [syn2321745].
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Fig. 2: The classification accuracy of different configuration of the
FA model (using GMMs with 256 mixture components).

the extended training and test subsets consist of 3000 and 750 recor-
dings, respectively, which have the same number of recordings per
class of distortion.

3.2. Acoustic Features and Distortion Modeling

The proposed approach operates on cepstral features, extracted using
a 30 ms Hamming window. For each frame of a signal, 12 MFCCs
together with the log energy were calculated along with delta and
double-delta coefficients. They were concatenated to produce a 39-
dimensional acoustic feature vector. The variable-duration feature
vector sequences are then converted into fixed-dimensional channel
vectors using the FA model trained on features from all training utte-
rances. To have a channel space with high distortion variability, it is
necessary to have different recordings from the same speakers with
different types and levels of distortion. Since it is difficult to collect
speech samples from patients under different distortion conditions,
we corrupt clean recordings of the speakers by different types and
levels of distortion to produce channel variability due to distortions.
The number of mixture components and the dimensions of speaker
and channel factors were selected using an exhaustive grid search
with 5-fold cross-validation (CV) on training data. Fig. 2 shows the
classification accuracy as a function of speaker and channel subspace
dimensions based on GMMs with 256 mixtures. The plot suggests
that the best performance is obtained with a configuration of zero ei-
genvoice and 210 eigenchannels. Although similar trends have been
observed for different numbers of mixture components, using 256
mixtures results in better performance. Setting speaker subspace to
zero simplifies (2) toMs,r = m+Uxs,r +Dzs. Moreover, based
on (4), instead of the Gaussian posterior-weighted speaker shift, a
speaker-independent shiftm is subtracted from the first order statis-
tics for all recordings. Prior to classification, the channel vectors are
centered and projected into the LDA subspace. Given 5 classes, the
dimensionality of the LDA projected channel vectors is 4.

4. RESULTS

In this study, the MFCC-SVM-based distortion classification system
in [9] is considered as the experimental performance baseline. We
used 5-fold CV to evaluate the performance of different systems in
terms of the number of correctly classified test recordings. The re-
sults of the baseline system and the proposed system before and after
channel vector pre-processing over all CV repetitions are presented
in Table 1 in the form of mean ± standard deviation (STD). The
reported numbers for different classes are the diagonal elements of

Table 1: Comparison of the baseline system and the proposed met-
hod before and after pre-processing channel vectors using LDA. Re-
sults are in the form of mean ± STD computed using 5-fold CV.

System Clean Noisy Rever. Clipped Coded Overall

Baseline 55±11 97±4 77±4 82±7 85±9 79±3

PLDA 100±0 0±0 0±0 0±0 0±0 20±0

PLDA-LDA 77±4 98±2 86±4 82±2 93±3 87±1

SVM 28±18 33±5 31±16 35±14 68±12 39±4

SVM+LDA 78±3 97±2 87±4 85±2 93±3 88±1

the confusion matrix for each system and the last column reports the
overall classification accuracy.

We can observe from these results that although the system is
not efficient when unprocessed channel vectors are directly used for
classification, applying LDA boosts the classification accuracy by
removing the nuisance directions from channel vectors and conse-
quently increasing the class separability in a dimensionality-reduced
channel space. The results also show that comparable classification
performance can be achieved with either generative or discriminative
classifiers on the pre-processed channel vectors. The 11.4% relative
improvement in classification accuracy compared to the baseline sy-
stem shows the effectiveness of the proposed distortion modeling for
pathological voices. The lower performance for detecting clean re-
cordings, however, might be due to the fact that the recordings in
the PD voice database have already some types of distortion such as
noise and reverberation or may have been through one or more co-
decs since they are collected over the telephone network. This me-
ans that some distorted recordings have been presented to the model
as “clean” ones during the training phase. We expect better results
if an entirely clean pathological database is used. The very good
performance in detecting noisy signals is due to the fact that the dis-
tribution of MFCCs, from which the channel vectors are extracted,
is more affected by additive noise than other types of distortion [9].

The proposed system has two major advantages over the base-
line system. First, distortion in variable duration signals is modeled
by a fixed-length, low-dimensional vector which is more suitable for
classification algorithms. Second, since channel vectors are more
robust to small changes in signal characteristics, due to articulatory
movements or dysphonias than raw MFCCs, they are more suitable
for distortion classification in pathological voices.

5. CONCLUSION

In this study, a new method for classification of four major types of
distortion in pathological voices commonly present during acquisi-
tion or transmission, namely background noise, reverberation, clip-
ping and coding, has been proposed. This method suggests a new
low-dimensional representation of distortion in recordings by ap-
plying factor analysis to GMM mean supervectors. We showed that
the extracted channel vectors include other variability which can be
reduced substantially by applying an LDA technique. Then, SVM
and PLDA classifiers were employed to classify the type of distortion
in signals. The experimental results over 3750 clean and distorted
Parkinson’s voices, as an example of pathological voices, show that
we can reach 88% overall classification accuracy and improve the
performance of the baseline MFCC-SVM-based system by 11.4%
which confirms the effectiveness of the proposed method in distor-
tion modeling and classification in pathological voice analysis appli-
cations.
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