
ROBUST DETECTION OF JITTERED MULTIPLY REPEATING AUDIO EVENTS USING
ITERATED TIME-WARPED ACF

Frank Kurth and Kevin Wilkinghoff

Fraunhofer FKIE, 53343 Wachtberg, Germany
{frank.kurth,kevin.wilkinghoff}@fkie.fraunhofer.de

ABSTRACT

This paper proposes a novel approach for robustly detecting multi-
ply repeating audio events in monitoring recordings. We consider the
practically important case that the sequence of inter onset intervals
between subsequent events is not constant but differs by some jitter.
In such cases classical approaches based on autocorrelation (ACF)
are of limited use. To overcome this problem we propose to use ACF
together with a variant of dynamic time warping. Combining both
techniques in an iterative algorithm, we obtain a method for signif-
icantly improved detection of jittered multiply repeating events. In
this paper we describe the new iterated time-warped ACF algorithm
and evaluate its performance on the bioacoustic application of de-
tecting repeating bird calls in monitoring recordings.

Index Terms— Repeated event detection, dynamic time warp-
ing, shift-ACF

1. INTRODUCTION

Robust detection of short-time, repeating audio events is a funda-
mental task in acoustic monitoring. An important application is
the detection of repeated animal vocalizations like for example bird
calls. In [1] it was shown that a generalized autocorrelation (ACF),
the shift-ACF [2], can be used to exploit the presence of multiple
repetitions of an audio event to increase the detection performance.
Here, ACF-based approaches assume repetitive temporal events with
onset times (t0, t0 + λ, t0 + 2λ, . . . , t0 + Kλ) =: o. In the ACF-
based approach the inter-onset-interval (IOI), or lag, λ is then esti-
mated by comparing a signal x containing the events, with shifted
versions of x. In real application scenarios, the IOI λ usually is not
perfectly constant but may vary by some jitter δ := (δ0, . . . , δK),
leading to distorted onset times o + δ. Although ACF-based ap-
proaches are robust to a small amount of jitter, those methods nat-
urally fail when the jitter increases. Motivated by the above appli-
cation scenario of detecting repetitive bird vocalizations, this paper
investigates scenarios where the event jitter is bounded by a maxi-
mum individual event deviation of maxi |δi| < λ/2. To overcome
the shortcomings of ACF-based repetition detection, we propose to
combine ACF-techniques with a variant of dynamic time warping
(DTW) [3]. Using DTW, we align a signal x with a shifted version
xs prior to the correlation step, which allows us to compensate event
jitter. By iterating this approach, we obtain the novel method of iter-
ated time-warped ACF (ITW-ACF) that is advantageous for multiple
repeating events. The use of iterated autocorrelation for improved
detection of multiply repeated signal events has been initially pro-
posed in [2]. DTW has a long history in the alignment of texts,
biological sequences and time series. The variant of subsequence
DTW has been successfully applied to the task of audio matching
in music retrieval, see [4] for a summary of DTW techniques. The

variant of restricted DTW we use in this paper has been initially
proposed in [3]. The principle of frequency warping has been used
in acoustics, particularly in order to adapt signal processing to hu-
man perception [5]. To avoid confusion, we note that the concept of
warped autocorrelation used in the latter paper is different from the
concepts in our paper.

The paper is organized as follows. In Section 2 we summarize
the existing shift-ACF- and DTW-approaches. Based on those, we
introduce the novel approach of ITW-ACF in Section 3. In Section
4 we describe the results of a comprehensive evaluation in the con-
text of bioacoustic signal detection, an application domain that has
recently attracted significant attention [6, 7, 8, 9, 10].

2. BASIC APPROACHES

2.1. ACF and Shift-ACF

The (sample-based) autocorrelation (ACF) of a discrete time signal
x of finite energy is defined as

ACF[x](s) :=
∑
k∈Z

x(k) · x(k + s). (1)

The basic principle of the classical ACF is that signal components re-
peating at a lag of s samples within an analyzed signal x are empha-
sized by a shift-productO 1

s [x](k) := x(k) ·xs(k), where x is multi-
plied by the conjugate of its s-shifted version xs(k) := x(k+s). An
ACF shows repeating events with an IOI of s by a local maximum
of |ACF[x]| at lag s.

In [2] the shift-ACF was proposed to improve the performance
of classical ACF for cases of multiple repetitions, i.e., the case
that an event is repeated more than two times at the same IOI.
The first principle underlying the shift-ACF is to apply the shift-
product, or type 1, operator O 1

s iteratively to amplify repeating
components. Secondly, O 1

s is complemented by a, type 0, shift-
minimum operator O 0

s [x](k) := min(|x(k)|, |xs(k)|) in order to
suppress non-repeating components. This can be generalized by ar-
bitrarily iterating n operatorsO t

s := O t1
s ◦· · ·◦O tn

s where the type
t = (t1, . . . , tn) ∈ {0, 1}n specifies which sequence of operators is
applied. The shift-ACF of type t and length n is then defined by

ACF t[x](s) :=
∑
k∈Z

O t
s [x](k), (2)

with shift-operations (ShOps) O t
s [x] depending on s. It can be

shown [2] that shift ACF techniques outperform classical ACF when
analyzing multiple repeating events. Note that the classical ACF co-
incides with the type 1 shift-ACF.

For a finite signal x of length N we define the self-similarity
matrix Sx := (x(k) · x(`))0≤k,`<N . Then, ACF[x](s) is the sum
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Fig. 1. Left: (1) Spectrogram of 5 subsequent DTMF-tones. (2)-(4) ShOp-matrices for different ACF types (2),(3) and time-warped ACF (4).
Right: Different ACFs corresponding to (2)-(4): (5) standard (type 1) ACF, (6) type 101 shift ACF, (7) warped ACF of type 101. Ground
truth IOI (circle) and 20 ms tolerance region (dashed lines) are indicated in black. Parameters θ and ∆ are explained in Sect.4

Fig. 2. Illustration of restricted DTW: (1)+(2) Spectrograms of
DTMF-signal and delayed version. (3) Restricted self-similarity ma-
trix and warping path (white circles).

of the s-th side diagonal of Sx. This side-diagonal consists of all
non-zeros values of the ShOp O 1

s [x] = x(k) · xs(k). Note that
all introduced ACF-concepts carry over to vector-valued signals x
where product- and minimum-operations are performed component-
wise. Particularly, x will be a time-series of spectrogram columns
for the rest of this paper.

Fig. 1 on the left shows (1) the spectrogram of a sequence of
5 identical DTMF-tones (Dual-tone multi-frequency signaling) with
some added Gaussian background noise. The basic IOI is about 180
ms but the single tones are temporally jittered. The rows of the
ShOp-matrix (2) show the ShOp magnitudes (vectors are replaced
by their 1-norms) of the classical ACF 1[x]. More explicitly, the s-
th row of (2) contains the sequence (‖O 1

s [x](k)‖1)k. The different

vertical (lag-) positions show the different IOIs of the DTMF-tones.
On the right, Fig. 1 shows ACFs corresponding to (2)-(4): (5) shows
ACF 1[x] which is obtained simply from the row-sums of the ShOp-
matrix. As a result of the jittered IOIs, no clear peak at the basic
IOI (indicated by a circle) nor in a 10 ms neighborhood (indicated
by dashed lines) can be observed. Fig. 1 (6) shows that the type
101 shift-ACF, with corresponding ShOps shown in (3) also fails to
properly represent the basic IOI around 180 ms.

2.2. Dynamic Time Warping

To compensate for jitter, we propose to compute ShOps of se-
quences that are temporally aligned using DTW. For two vector
sequences x = (x1, . . . , xN ) and x′ = (x′1, . . . , x

′
M ), the task

of DTW can be summarized as follows. First, a similarity ma-
trix Sx,x′ := (d(xk, x

′
`))1≤k≤N,1≤`≤M is computed, where d

is a suitable distance measure. In our case we will use the co-
sine measure d(ξ, ζ) = 〈ξ, ζ〉/(‖ξ‖2 · ‖ζ‖2). An alignment then
amounts to finding an optimal warping path DTW(x, x′) := w :=
((a1, b1), . . . (aP , bP )) through Sx,x′ , such that the path similar-
ity δ(w) :=

∑P
i=1 d(xai , x

′
bi

) of w is maximized. Addition-
ally, warping paths are restricted to start in the upper left corner,
(a1, b1) = (1, 1), end in the lower right, (aP , bP ) = (N,M),
and obey the step condition, (ai+1, bi+1) = (ai, bi) + σ. where
σ ∈ {(0, 1), (1, 0), (1, 1)}. The warping path can be found effi-
ciently using dynamic programming. We refer to [4] for details.

In this paper, we will use DTW-based alignment of equal-length
sequences, i.e., N = M , with the global constraint that the warping
path is restricted to a band-region of size Λ around the main diago-
nal, the Sakoe-Chiba band [3].

Fig. 2 illustrates an alignment of a DTMF-signal with spectro-
gram shown in (1) and a shifted version of itself (2). The signal con-
sists of 5 identical tones at a basic IOI of λ = 139 ms with random
jitter of |δi| < 20 ms. In (3) the similarity matrix is shown. Regions
outside the Sakoe-Chiba band of width Λ are left blank. The optimal
warping path inside the band is shown by white circles. The dashed
lines indicate how DTW compensates for jitter and thus properly
aligns the events of the DTMF-signal and its shifted version.
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3. ITERATED TIME-WARPED ACF

DTW is now used to align a signal x and its shifted version xs prior
to the shift operation. For practical implementation, x and xs will
be replaced by finite, equal length sequences xH and xT in the sub-
sequently described algorithm. The general idea is that DTW com-
pensates the misalignment of repeating components due to jitter. By
using a restricted version of DTW with a Sakoe-Chiba band of size
Λ ≤ λ, an alignment is only possible between uniquely determined
pairs of components in x and xs, if the above maximum individ-
ual event deviation of maxi |δi| < λ/2 holds. More precisely, Λ-
restricted DTW can compensate temporal jitter with maximum indi-
vidual event deviation < Λ/2, but not more.

The time-warped ShOp for x at lag s and type t′ ∈ {0, 1} is
computed as follows:

1. Obtain subsequences to be DTW-aligned as xT := xs+1:N

(“tail” sequence of x) and xH := x1:N−s (“head” sequence
of xs).

2. Use Λ-band-restricted DTW to align xH and xT result-
ing in a warping path w = DTW(xH , xT ), where w :=
((a1, b1), . . . (aP , bP )) and ai, bj ∈ [1 : N − s], refering
to the common length N − s of xH and xT .

3. Compute thew-warped t′-operation by defining the sequence
y(k) := Ot′

0 (xH(ak), xT (bk)), for 1 ≤ k ≤ P .

4. Unwarp y with respect to xH , by using the path projection
p := p1 := (a1, . . . , aP ) on the first component ofw. To this
end, an unwarping operation up is defined for p : [1 : P ] →
[1 : N − s] and applied to the sequence y. Let p−1(k) :=
{i | p(i) = k} be the index set of all positions contributing to
k ∈ [1 : N − s]. Because of the start- und end-conditions
that hold for the warping path, i.e., (a1, b1) = (1, 1) and
(aP , bP ) = (N,N), as well as the admissible step sizes σ ∈
{(0, 1), (1, 0), (1, 1)}, it follows that |p−1(k)| ≥ 1 for all k.
Hence we can define

up[y](k) :=
1

|p−1(k)|
∑

`∈p−1(k)

y(`). (3)

5. The DTW-ShOp is then defined by unwarping y w.r.t. the
first component p1, this is, Õ t′

s [x] := up1 [y]. Note that
alternatively, unwarping w.r.t. the second component p2 :=
(b1, . . . , bP ) can be used. Our experiments show that this
leads to essentially the same results.

Then, the iterated time-warped ACF (ITW-ACF) of type t =
(t1, . . . , tn) is defined as

ITW-ACF t[x](s) :=
∑
k∈Z

Õ t
s [x](k), (4)

where Õ t
s [x] := Õ t1

s [Õ (t2,...,tn)
s [x]].

Fig. 1 (7) shows ITW-ACF 101[x] for the jittered DTMF signal,
clearly exhibiting a peak close to the basic IOI. The rows of Fig. 1 (4)
show the type 101 DTW-ShOps. As compared to the corresponding
shift-ACF ShOps (3), the energy is clearly concentrated at regions
corresponding to aligned events. As compared to classical ACF (5),
those regions share a common lag range, leading to the clear peak in
the ITW-ACF of Fig. 1 (7).

Fig. 3. Detection-EERs for (1) DTMF-signals and (2) bioacoustic
events depending on SNR-level of added Gaussian noise.

Fig. 4. Detection-EERs for bioacoustic events depending on SNR-
level of added realistic bioacoustic background noise.

4. EVALUATION

As ITW-ACF can be used as a basic building block for various kinds
of detection algorithms, we perform an evaluation by comparing
ITW-ACF to classical ACF(as a baseline) and different types of shift-
ACF. We evaluate detection performance of the different methods
based on ACFs as depicted in Fig. 1 (5)-(7) computed for various
synthesized event sequences with known basic IOI. First, all ACFs
a are normalized to a/‖a‖1. Then, all lags inside a fixed tolerance
region of width ∆ around the known basic IOI (circles) with ACF-
value above a fixed threshold 0 ≤ θ ≤ 1 will be considered as true
positives (TP). Outside this tolerance region, an ACF greater than
θ is considered as a false positive (FP). Parameters θ = 0.1 and
∆ = 20 ms are indicated in red in Fig. 1. By varying θ, a ROC
curve showing TP-rate vs FP-rate is computed for each ACF. Each
experiment is repeated, interpolated ROC curves are averaged and an
equal error rate (EER) is computed as single quality measure. EER
represents the point on the interpolated ROC curve where the FP-rate
equals 1-TP-rate (missed detection rate).

As a first experiment, we use a completely synthetic setting of
5 identical DTMF-tones repeated at an initial (random) IOI between
80 and 200 ms, where each event is offset by a maximum individ-
ual deviation of ±20 ms, i.e., λ/2 = 20. After shifting the events
according to the random jitter, the ground truth IOI is adjusted by
choosing a best fitting IOI in a least squares sense.
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Fig. 5. 5-fold repeated bioacoustic event (framed) with 9 added
chirps at 0 dB Gaussian background noise.

Fig. 6. Detection-EERs for bioacoustic events with added (1) realis-
tic bioacoustic background noise at 10 dB, depending on maximum
event deviation in ms, and (2) Gaussian noise at -5 dB for different
numbers of added chirp signals.

For the first experiment, Gaussian background noise is added at
different SNRs. Here, the SNR is computed w.r.t. the event dura-
tion, so at 0 dB the noise during an event has the same energy as
the event itself. Fig. 3 (1) shows detection-EERs based on differ-
ent types of shift-ACF and corresponding ITW-ACFs, depending on
the SNR-level of the added Gaussian noise averaged over 750 trials.
The DTW band-restriction – valid for the first 3 experiments – is set
to Λ := λ, and the evaluation tolerance is ∆ := 20 ms. Except
for very strong noise, ITW-ACF (bold lines - in the legend indicated
by ACF-type and ’ITW’) outperforms shift-ACF, where type 1 ACF
corresponds to classical ACF. Furthermore, higher length ACFs out-
perform the classical length 1 ACF.

In a second experiment we manually annotated a dataset of 61
bioacoustic events, each taken from sequences of repeated event.
For this we used audio recordings from the Reference System of
Animal Vocalisations of Museum für Naturkunde Berlin1 and the
xeno-canto2 platform. By randomly selecting single events from this
dataset in 750 trials, we repeated the first experiment. The resulting
EER-graphs shown in Fig. 3 (2) largely confirm the findings of the
first experiment.

For the third experiment we annotated 10 passages from the

1http://www.animalsoundarchive.org/RefSys/
2http://www.xeno-canto.org/

above recordings containing no dominant animal vocalizations.
Those were randomly used as source for added background noice in-
stead of the Gaussian noise resultung in EER-graphs shown in Fig. 4.
While again ITW-ACF outperforms classical resp. shift-ACF, longer
shift-ACF types are beneficial only for better SNRs. Note that due to
the way of background noise normalization we use, absolute SNRs
of this and the first two experiments cannot be compared directly.

In the fourth experiment, we evaluate the effect of the amount
of jitter by changing the maximum individual event deviation from 0
to 50 ms. The setting is as in experiment 3, i.e., random bioacoustic
events and random real bioacoustic background are added at a fixed
SNR of 10 dB. The EER-graphs in Fig. 6 (1) show a transition from
better performance of classical resp. shift-ACF for low deviations to
better performance of ITW-ACF for maximum deviations exceeding
20 ms. While this is perfectly reasonable, a decrease in performance
of ITW-ACF towards low deviations is noteable. The main reason
for this is that for low deviations, the ITW-ACF by construction re-
sults in box-shaped regions of width Λ around the basic IOIs, in our
setting leading to worse EERs. For higher deviations, those regions
get more peaky as shown in Fig. 1 (5), hence improving EERs. In the
fifth experiment, we evaluate detection performance in the presence
of secondary events. For this we selected short-time chirp signals
as they are similar to a frequent type of bird vocalization. In our
evaluation we added 0 - 16 chirps to each event sequence gener-
ated from the above bioacoustic dataset. Here, each added chirp has
the same energy as the bioacoustic event. Chirp durations were se-
lected to be the same as the respective bioacoustic events, start and
end frequency were randomly and independently selected. Gaus-
sian background noise at -5 dB is added, λ/2 = 20, Λ := λ, and
∆ := 20 are used as in experiments 1–3. As an example, Fig. 5
shows a 5-fold repeated bioacoustic event with 9 added chirps at 0
dB Gaussian background noise. The first occurrence of the event is
marked by a black frame. Fig. 6 (2) shows resulting EER-graphs
where the advantage of ITW-ACF over classical ACFs, particularly
in combination with higher order ACF-types is obvious.

5. CONCLUSIONS

In this paper we have proposed to combine shift-ACF with restricted
DTW in order to robustly detect jittered multiply repeating audio
events. By iterating ACF and DTW we have derived the ITW-ACF
algorithm. In our evaluations we compared ITW-ACF with classi-
cal ACF and shift-ACF for the application of detecting repeated bird
vocalizations. To this end we designed different test scenarios us-
ing combinations of both artificial and realistic audio events as well
as artificial and realistic background noises. It turns out that the
proposed approach significantly improves EERs in many scenarios
w.r.t. to previous approaches. For future work it will be hence very
promising to identify further scenarios where ITW-ACF can com-
plement or substitute ACF-based approaches. Furthermore, in fu-
ture work the combination of DTW and ACF proposed in this paper
could be improved with respect to its computational complexity by
using concepts of subsequence DTW ([4], Chapter 7).
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