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ABSTRACT

This paper focuses on the problem of bird species identification us-
ing audio recordings. Following recent developments in deep learn-
ing, we propose a multi-layer alternating sparse-dense framework
for bird species identification. Temporal and frequency modulations
in bird vocalizations are captured by concatenating frames of spec-
trograms, resulting in a high dimensional super-frame based rep-
resentation. These super-frame representations are highly sparse.
Hence, we propose to use random projections to compress these
super-frames. This is followed by class-specific archetypal analy-
sis, employed on these compressed super-frames for acoustic mod-
eling, to obtain a convex-sparse representation. These convex-sparse
representations are referred as compressed convex spectral embed-
dings (CCSE). It is observed that these representations efficiently
capture species-specific discriminative information. Experimental
results show compelling evidence that the proposed approach shows
performance comparable to existing methods such as deep neural
networks (DNN) and dynamic kernel based SVMs.

Index Terms— bioacoustics, bird species identification, archety-
pal analysis

1. INTRODUCTION

Habitat destruction due to human activities and global climate
change has led to a rapid decline in populations of various avian
species. In recent times, various conservation efforts have been
started to protect these species. Most of these efforts start with
surveying and monitoring birds in their natural habitats, for which
acoustic monitoring is a convenient and passive method [1]. It can
be utilized in habitats where manual monitoring is difficult such as
in swamps, marshes and remote islands. In this work, we target
the problem of species identification from audio recordings, which
is a major task in acoustic monitoring. One of the major steps
in designing such a system is the choice of acoustic features with
species-specific signatures. This work is motivated by the success of
learnt features obtained by processing the spectrogram using matrix
factorization (MF) approaches [2]. MF has been shown to perform
well for various tasks in bioacoustics such as segmentation [3] and
bird audio detection [2, 4].

In contrast to the direct factorization of the spectrogram, we pro-
pose a supervised multi-layer alternating dense-sparse framework
for bird species identification. The proposed multi-layer frame-
work (illustrated in Fig. 1) helps in modeling various latent hidden
acoustic attributes. To the best knowledge of the authors, such a
framework has not been applied for bioacoustics, although a few
works exists in context of natural images and speech/audio signals
[5, 6]. First, a given recorded audio signal (dense) is converted into
a magnitude spectrogram (sparse). The notion of sparsity comes

Fig. 1. Proposed pipeline for obtaining CCSE from audio signal.

from the fact that bird vocalizations acquire only a few frequency
bins in the spectrogram [7]. Employing a conventional MF approach
for feature learning at this stage, will not capture the species-specific
signatures efficiently, which arises due to the time-frequency mod-
ulations present in bird vocalizations . To address this, context
information is embedded around each frame of the spectrogram by
concatenating a fixed number of frames (see Fig. 2). However, this
results in a high dimensional (sparse) super-frame representation
which is not suitable for acoustic modeling due to high compu-
tational complexity. This issue is addressed by compressing the
super-frames to a relatively low dimensional representation (dense)
using random projections [8]. The motivation for such relatively
low-dimensional embeddings comes from the pairwise distance
preserving property of random projections, following the Johnson-
Lindenstrauss (JL) lemma [9]. Next, acoustic modeling on the
compressed representations is performed using restricted robust
archetypal analysis (AA) for each class/bird species. Compared to
its counterparts such as NMF or sparse dictionary learning [10], AA
results in a more compact, probabilistic and interpretable represen-
tation [11]. The learned archetypal dictionaries are used to obtain a
sparse-convex representation for compressed super-frames. In this
work, these sparse representations are referred to as compressed
convex spectral embeddings (CCSE). These CCSE are used for
species classification using a minimum reconstruction error based
classifier [12].

AA involves approximating the convex-hull of the data. The es-
timation of convex hull is computationally demanding [13]. Hence,
in order to obtain a better estimate and speed up the process of find-
ing archetypes, we propose to use restricted AA. In other words, AA
is restricted to the data points around the boundary/convex hull only.
Moreover, AA is performed individually for each class and no sepa-
rate effort is made to increase the inter-class discrimination. Hence,
there can be high correlation between inter-class dictionary atoms
which may decrease the discrimination ability. One way to over-
come this problem is to learn dictionaries in a supervised manner
as done in approaches like label-consistent K-SVD [14]. However,
they have large computational complexity (time and space). To ad-
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dress this, we propose an efficient procedure to choose atoms from
each dictionary such that the gross correlation over all dictionaries
is reduced. This helps in decreasing the size of dictionaries as well
as may boost up the classification performance. The major contribu-
tions of this work are listed below:

• A compressed super-frame based representation that captures
time-frequency bird vocalization modulations.

• Restricted robust archetype analysis for modeling bird vocal-
izations.

• An iterative pruning procedure to choose a subset from the
atoms of each dictionary such that the gross-correlation be-
tween inter and intra dictionary atoms is reduced.

The rest of this paper is organized as follows. In Section 2,
we discuss some of the methods proposed in the literature for bird
species identification using acoustic data. In Section 3, the proposed
framework is described in detail. Performance analysis and conclu-
sion are in sections 4 and 5, respectively.

2. RELATED WORKS

Many studies have targeted the task of bird species identification. In
[15], syllables modeled as frequency and amplitude modulated sinu-
soidal pulses are used for species identification. This method works
only for species producing tonal sounds. Lee et. al proposed to use
two-dimensional cepstral coefficients for bird species identification
in [16]. Each class is modeled by a set of prototype vectors which
are centroids of vector quantization or means vectors of Gaussian
mixture models (GMM). Further, linear discriminant analysis (LDA)
is applied on these prototypes to increase the inter-class variations.
The final classification is done using a k-NN classifier. In [17],
SVM with various dynamic kernels such as probabilistic sequence
kernel (PSK), GMM supervector (GMMSV) kernel, GMM-UBM
mean interval (GUMI) kernel, GMM-based intermediate matching
kernel (GMM-IMK) and GMM-based pyramid match kernel (PMK)
are used for bird species classification. Apart from this, a deep neu-
ral network (DNN) has also been proposed for species identifica-
tion. For large-scale species identification, an unsupervised feature
learning method based on spherical K-means has been proposed in
[18]. The discriminative qualities of these features are verified using
a random forest based classification framework. In [19], a convo-
lutive neural network (CNN) based framework is used for species
identification. It uses Segnet [20] to segment vocalizations from the
spectrogram and simultaneously classifies these bird vocalizations.
Hence, this framework bypasses the need to segment the bird vocal-
izations before classification.

3. PROPOSED FRAMEWORK

In this section, we describe the steps involved in converting an au-
dio recording into the compressed super-frame based representation
(see Fig. 1). Further, we explain restricted robust AA to learn class-
specific dictionaries from the training audio recordings. This is fol-
lowed by the proposed pruning procedure to reduce the inter-class
correlation between dictionary atoms. Finally, we describe the pro-
cedure for computing CCSE during the testing/classification phase.

3.1. Computing compressed super-frames

The short-time Fourier transform (STFT) is used to convert each in-
put audio recording into a magnitude spectrogram, S (m×N , m is

Fig. 2. Procedure of obtaining super-frames from the spectrogram.

the number of frequency bins, N is the number of the frames). Con-
text information is embedded to the current frame of the spectrogram
by concatenatingW previous andW next frames around the current
frame. This gives rise to a high 2Wm+m dimensional representa-
tion (see Fig. 2). After this concatenation process, the pooled spec-
trograms of all the examples of a particular class, Ŝ, are transformed
to a super-frame based representation matrix, F ∈ R(2Wm+m)×l,
where l is the number of pooled super-frames. Working with these
high-dimensional super-frames is computationally expensive. How-
ever, such super-frame representations are highly sparse. Hence, ex-
ploiting the JL lemma [9], we propose to use random projections to
compress these super-frames. It is conjectured in the literature that
with high probability Gaussian random matrices satisfy Johnson-
Lindenstrauss lemma i.e., they preserve the pair-wise distance be-
tween super-frames in the transformed domain [21]. In particular,
the transformation, φ : R2Wm+m → RK is applied by using a
random Gaussian matrix (G of dimensions K × 2Wm + m) to
compress the super-frames. This compressed transformed represen-
tation, X = GF,X ∈ RK×l, is used for both learning the dictio-
naries (for acoustic modeling) in the training phase and obtaining the
CCSEs during the testing phase.

3.2. Training: Learning dictionaries using restricted robust AA

For acoustic modeling, we have employed AA, which is a form of
non-negative MF technique where the matrix containing compressed
super-frames, X, is decomposed as X = DA. The dictionary, D,
consists of the extremal points or archetypes, which lie on the con-
vex hull of the data and are restricted to be the convex combina-
tion of the individual data points i.e., D = XB,D ∈ RK×d. Since
archetypes model the convex hull, they provide more compact and
meaningful representation of the data [22, 4]. To learn efficient dic-
tionaries, the super-frame representation, F, is only obtained from
those audio regions where vocalizations are present. The vocaliza-
tions are extracted using a semi-supervised method proposed in our
earlier study [3]. The presence of outliers can affect the performance
of AA [11]. In the proposed framework, these outliers may arise due
to noise, segmentation errors or wrong labels. To tackle this issue,
we propose to use robust AA which effectively handles the outliers
present in the data. In particular, the archetypal dictionary, D, is
learned by optimizing the following function [11]:

argmin
B,A

bj∈∆l,ai∈∆d

∑
i

h(‖xi−Dai‖2)

=
1

2

∑
i

1

wi
‖xi−XBai‖22 + wi,

∆l , [bj � 0,‖bj‖1 = 1],∆d , [ai � 0, ‖ai‖1 = 1], wi ≥ ε
(1)
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where ai and bj are the columns of A ∈ Rd×l and B ∈ Rl×d,
respectively. For any scalar u and constant ε, the Huber function is
defined as, h(u) = 1/2 min

w≥ε
[u2/w + w]. The weight wi for xi is

defined as: wi = max(‖xi − XBai‖2, ε). During optimization,
wi becomes larger for outliers and reduces their importance while
finding archetypes. More details about robust AA can be found in
[11].

Restricted AA: MF, in general, has large time/memory require-
ments. However, since archetypes lie on the boundary of the convex
hull, it is possible to restrict the search of the archetypes to the set of
data points, indexed by B, that lie around the boundary. To achieve
this speed up, we first minimize the following objective:

‖X−XC‖2F s.t. diag(C) = 0, ci � 0, and ‖ci‖1 = 1, (2)

where, diag(.) denotes the diagonal elements. The solution C ∈
Rl×l (having columns ci), can be seen as the coefficient matrix for
representing each exemplar (xi) in X as a linear combination of
other exemplars [13]. The significant values of the solution refer
to the points xk (k ∈ B) around the convex hull, due to the fact that
they are selected iteratively by maximizing the negative gradient of
the objective function defined in Eq. (2) with respect to each ci,

argmax
k

−∇ = XT (xi−Xci) = 〈xi,xk〉−
∑
l

cli〈xl,xk〉, (3)

where cli is the lth coefficient of ci. By property of convex geome-
try, inner product between two points is maximized when one of the
points is an extremal point [23]. As a result, the solution to Eq. (2)
ensures that the union of the indicies of significant elements (having
high magnitude) of each ci refers to data points around the bound-
ary. Note that problem in Eq. (2) can be solved using a fast quadratic
programming solver, and our experiments reveal that performing AA
on the reduced training set X[:,B], is approximately 5× faster than
on the full X.

Decreasing correlation between inter class dictionary atoms:
In the above framework, each class-specific dictionary is learned
independently. This often leads to a high correlation among inter-
class dictionary atoms which may degrade the classification accu-
racy. Also, the number of optimal archetypes to be learned for each
class is unknown. Although, as discussed earlier, one can use super-
vised dictionary learning approaches such as label-consistent KSVD
[14], these approaches are computationally expensive and the under-
lying objective may not converge, especially when the number of
classes are large. In contrast, we propose a computationally efficient
alternative, where the learned class-specific dictionaries are pruned
to form a final concatenated dictionary.

We choose a set of atoms from each class-specific dictionary
which decreases the correlation between the inter/intra-class dictio-
nary atoms. Let us denote the pruned dictionary of the qth class by
D∗

q

. The algorithm starts by finding the independent atoms from
the dictionary D1 of the first class iteratively using the following
metric:

i = max
i*Z
‖d1

i −D1
ZD

1+
Z d1

i ‖22 s.t. D1T

Z D1
Z is invertible. (4)

Here d1
i is an atom of D1, + denotes the pseudo-inverse and D1

Z ⊂
D1, denotes the current set of selected atoms. Eq. (4) computes
the distance of an atom d1

i to the space spanned by the atoms in
D1
Z , and selects the one which does not lie in the span of D1

Z . To
choose K atoms from D1, Eq. (4) is iterated K times. Hence, a
pruned dictionary, D∗

1

⊂ D1, is obtained. This whole procedure

0 20 40 60 80 100 120
0

0.2

0.4

0.6
(a)

A
m

p
lit

u
d

e

0 20 40 60 80 100 120
0

0.2

0.4

0.6
(b)

A
m

p
lit

u
d

e

0 20 40 60 80 100 120
0

0.2

0.4

0.6
(c)

Coefficient index

A
m

p
lit

u
d

e

Fig. 3. CCSE obtained for a super-frame of bird species (a) black-
throated tit, (b) black-yellow grosbeak and (c) black-crested tit.

is repeated for the dictionary of each class to find the independent
atoms with respect to the selected atoms of all the previous classes.
Our implementation uses the fast exemplar selection (FES) algo-
rithm (see [24] for more details) based on block matrix and incre-
mental Cholesky factor updates. Thus, we obtain the final pruned
dictionary as a concatenation of class-specific independent atoms as
D∗ = [D∗

1

D∗
2

. . .D∗
q

].

3.3. Testing: Obtaining CCSE and classification
For classifying a given audio recording, bird vocalizations are seg-
mented and the corresponding super-frames are converted into the
compressed super-frame representation as described in Section 3.1.
The random Gaussian matrix employed during training and testing is
the same. For testing, we have used the generative classification ap-
proach, where a segmented test super-frame is classified to the class
that gives the smallest reconstruction error. In particular, the final
dictionary D∗ is used to solve for the sparse/convex decomposition
(CCSE), at = [a1

t . . .a
q
t ], for a given test compressed super-frame,

xt, using an active-set QP solver from the SPAMS toolbox [25]. For
each class, these CCSE are significantly different and can be used
as features in any classification framework. This behavior is illus-
trated in Fig. 3. The figure depicts CCSE obtained for three super-
frames of three different species. These CCSE are obtained using
the pruned dictionary derived from the individual dictionaries of all
three species (as described earlier). The pruned dictionary contains
40 atoms per class (the first 40 for black-throated tit, the next 40 for
black-yellow grosbeak and the last 40 for black-crested tit) and in
CCSE, these atoms exhibit higher amplitude for the super-frame be-
longing to their respective class. This provides a strong evidence of
the presence of species-specific signatures.

Using CCSE, the reconstruction error of a super-frame, xt be-
longing to the qth class, is calculated as: rqt = ‖xt − D∗

q

aqt‖2.
Finally, to classify the input test recording, a voting rule is applied
on the segmented super-frames of the input test recording.

4. PERFORMANCE EVALUATION
4.1. Dataset used
The proposed framework is evaluated on a dataset containing audio
recordings of bird species found in the lower Himalayan regions.
This dataset was collected at the Great Himalayan National Park
(GHNP) located in North India and contains audio recordings from
26 different bird species. Each recording has a sampling rate of 44.1
kHz and is labeled by experienced birdwatchers. The duration of
these recordings vary from 15 to 86 seconds. We segmented bird
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Fig. 4. Comparison of classification performance of different meth-
ods on GHNP dataset (averaged across three folds).

vocalizations from these recordings using the segmentation method
proposed in [3]. These segmented vocalizations are used for training
and testing.

4.2. Experimental setup and parameter selection
In all the experiments, each input recording is converted into a spec-
trogram by applying the STFT with 512 FFT points on 20 ms frames
having 50% overlap. The parameter W = 2 is used to obtain super-
frames, which are compressed via random projections to have a di-
mension of 500. For each class, 256 archetypes are learned using
restricted robust AA. After applying the independent atom selection
procedure, 40 atoms are chosen from each dictionary. All these pa-
rameters are obtained empirically. The performance of the proposed
framework is measured in terms of classification accuracy and is
compared with the performances of the DNN and dynamic kernels
based SVM used in [17] for species identification. For comparison,
five different dynamic kernels are used. These include : probabilis-
tic sequence kernel (PSK), GMM supervector kernel (GMMSV),
GMM-UBM mean interval kernel (GUMI), GMM-based pyramid
match kernel (PMK) and GMM-based intermediate matching ker-
nel (IMK). The DNN architecture (3 layers with 512 hidden units in
each layer) proposed in [17] is also used here for comparison. The
DNN and aforementioned kernels use Mel-frequency cepstral coef-
ficients (MFCC) as the feature representation. The results reported
here are with the optimal parameter settings for all the comparative
methods. A three-fold cross-validation is used for experimentation
and 33.33% of the vocalizations of each species are used for train-
ing and the rest are used for testing. The results reported here are
averaged across all three folds.

4.3. Results and Discussion
Classification performance: The comparison of the classification
accuracies of the proposed CCSE based framework with the DNN
and SVM powered by dynamic kernels is depicted in Fig. 4. It can
be observed that the proposed framework performs better than the
SVM based approaches, whereas the DNN system performs slightly
better (0.2% relative improvement) than the proposed framework.
The relative improvements of 1.89%, 2.16%, 1.15%, 1.73% and
1.36% are observed by the proposed framework on PSK, GMMSV
kernel, GUMI kernel, IMK and PMK, respectively. Although the
performance of the DNN and the proposed framework is compa-
rable, the proposed framework is computationally efficient as the
number of trainable parameters are significantly less. Also, AA
inherently requires less data to capture variations present in data
[4]. This makes the proposed framework more suitable in conditions
where the amount of labeled training data is small (as is common in
bioacoustic problems).
Compression vs. classification trade-off: To establish the extent
of compression that can be achieved in the super-frames, we experi-
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Fig. 5. Effect of compression on classification performance in the
proposed framework.
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Fig. 6. Classification accuracy vs. the number of chosen atoms.

mented with different compression ratios and the results are shown
in Fig. 5. It can be observed that one can achieve a 61% compres-
sion i.e. K = 500 from the original dimension of 1285 (obtained
by using W = 2), without any decrease in the classification accu-
racy. This confirms the claim that given enough measurements of
the sparse super-frame feature, it is possible to preserve the context
information in bird vocalizations to a great extent. This is in contrast
to existing approaches (such as in [18]) which embed the context
information around a frame by averaging or max-pooling. The tem-
poral and frequency modulations may not be fully modeled due to
smearing out or loss of the detailed information which may degrade
the classification performance. To establish this, experiments were
also performed by averaging the super-frames (with no compres-
sion) followed by AA analysis for classification of bird species. A
relative drop of 2.89% (96.9% to 94.1%) in accuracy was observed.

Size of pruned dictionary vs. classification trade-off: In this
experiment, we analyzed the effect of different numbers of cho-
sen atoms per dictionary (after pruning) on the classification perfor-
mance while keeping other parameters fixed (W = 2 andK = 500).
The results of this experiment are illustrated in Fig. 6, and it is con-
firmed that we are able to maintain the classification accuracy ob-
tained in case of full dictionary (having 256 atoms), with just 40
atoms per dictionary. This justifies the use of pruning procedure
in the proposed CCSE framework. This behavior can be beneficial
when we are dealing with a large number of bird species.

5. CONCLUSION

In this work, we proposed CCSE based framework for bird species
identification. The framework is based on a restricted version of
robust AA which effectively models each bird species even in low
data conditions. We also proposed an iterative procedure to choose
atoms from each dictionary to decrease gross correlation among
inter-dictionary atoms. This allowed us to decrease the size of dic-
tionaries without degrading the classification performance. Future
work may include to extend this framework for species classification
on a large scale.
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