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ABSTRACT

Bioacoustic signal classification is a powerful tool for bi-
ologists, assisting in tasks such as environmental monitoring
of biomes in areas of difficult access, and providing clues
about the evolution and categorization of animals from the
perspective of similarity of their bioacoustic mechanisms.
The recently proposed mutual singular spectrum analysis
(MSSA) introduced a novel bioacoustic signal representation
based on subspaces, which is compact and requires no cost
intensive preprocessing techniques (e.g. segmentation, noise
reduction or syllable extraction). However, MSSA has no
discriminant mechanism to separate classes, and it assumes
that a class is composed of linear combinations of the refer-
ence signals, which in practice is unlikely, and impairs study
of the individuals’ signals among the same species. In this
paper we propose an extension named Grassmann singular
spectrum analysis (GSSA), which preserves the advantages
of MSSA in addition to the following contributions: we as-
sume that a class may be composed of a set of subspaces
and we simplify bioacoustic signal subspace representation
by mapping the subspaces onto a Grassmann manifold; and
we offer a discriminant mechanism to separate the species in
a classification task. We demonstrate the validity of GSSA
through a classification experiment on a publicly available
bioacoustic signals dataset.

Index Terms— Bioacoustic signals, subspace method,
Grassmann singular spectrum analysis, Grassmann manifold.

1. INTRODUCTION

Bioacoustic signal classification plays an important role in en-
vironmental monitoring as it gives experts the means to effi-
ciently acquire information from areas of difficult access. It
also assists by providing clues about the evolution and catego-
rization of animals from the perspective of similarity of their
bioacoustic mechanisms, which may be useful in new species
discovery.

Remote monitoring of areas of difficult access, e.g. dense
forests or depths of the sea, allows one to obtain unique in-
formation in order to catalog, analyze and infer the habits,
interactions and the quality of the wild life contained in that
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Fig. 1. Conceptual diagram of the proposed GSSA.

specific environment. Therefore, such information is critical
in order to predict changes in the population of species and
the quality of the sea, air, soil and other natural elements.

An efficient bioacoustic signal classification framework
needs to work reliably and within some practical restrictions.
Such frameworks need to run on low-cost computational re-
sources, not only to avoid using prohibitively expensive hard-
ware, but to avoid equipments too complex to deploy on the
field. That means a classification system should have low
computational cost during its acquisition, preprocessing and
classification stages. Despite this, several of the bioacoustic
signal classification frameworks recently proposed [1, 2] are
composed of multiples elements, including noise [3] and di-
mensionality reduction [4], feature selection [5], model train-
ing [6] and, finally, the actual classification [7].
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The recently proposed mutual singular spectrum analy-
sis (MSSA) [8] introduced a novel bioacoustic signal repre-
sentation based on subspaces, which is compact and requires
no cost intensive preprocessing techniques (e.g. segmenta-
tion, noise reduction or syllable extraction). The input signals
are represented within the singular spectrum analysis (SSA)
paradigm, by a set of leftmost eigenvectors extracted based
on the signals’ accumulated energy. This set forms a basis
for a subspace in the vector space, since the vectors are or-
thonormal [9, 10]. Then, canonical angles [11, 12] between
the different bioacoustic subspaces are used to measure their
similarity, and 1-NN classification is performed. This algo-
rithm is known as mutual subspace method (MSM) [9, 13].

Although MSSA has efficiently addressed these bioacous-
tics challenges, its representation has some issues that de-
crease its reliability as a monitoring instrument: it has no
discriminant mechanism to separate classes (e.g. species of
animals); and it assumes that a class is composed of linear
combinations of the reference signals, which in practice is
unlikely, and impairs study of the individuals’ signals among
the same species.

To tackle these issues, we propose a new algorithm of
Grassmann singular spectrum analysis (GSSA), which is de-
picted as a conceptual illustration in the Figure 1. We in-
troduce a Grassmann manifold formulation, which simpli-
fies the complicated procedure of the subspace based method
using canonical angles. The Grassmann manifold, symbol-
ized as G(m, d), is defined as a set of m-dimensional linear
subspaces of Rd [14]. In this framework, a subspace-based
method is regarded as a simple classification method on a
Grassmann manifold, where each single subspace is treated as
a point, and thereby, each bioacoustic signal is represented by
a point in the manifold. Various types of classification meth-
ods have been constructed on a Grassmann manifold [15, 16,
17, 18]. In particular, discriminant analysis on a Grassmann
manifold (GDA) has been one of the popular tools for image
set classification. GDA can be conducted as a kernel discrim-
inant analysis through the kernel trick with a Grassmann ker-
nel. Thus, we are introducing a discriminatory mechanism to
the bioacoustic signal classification by utilizing GDA.

We summarize our contributions as follows: (1) We pro-
pose a bioacoustics classification algorithm assuming that a
class may be composed of a set of subspaces, and we sim-
plify bioacoustic signal subspace representation by mapping
the subspaces onto a Grassmann manifold; (2) We introduce
a discriminant mechanism to separate classes by the use of
GDA; (3) As an extension of MSSA, our method preserves
various of its advantages, namely: It requires less storage than
most conventional methods; has a solid formulation to select
compactness ratio; can handle arbitrary signal lengths; and
does not need any preprocessing techniques, such as segmen-
tation, or syllable extraction.

2. PROPOSED METHOD

In this section, we formulate the classification problem based
on the bioacoustic signals. Then, we describe the representa-
tion by SSA subspaces, and the concept of canonical angles
and Grassmann manifold, and how to use it to perform GDA.

2.1. Problem Formulation

Consider Nc reference bioacoustic signals xi
c(t) for each c-th

class (c = 1, . . . , C), where i = 1, . . . , Nc, and Nc can be
different for each class. The index t = 1, . . . , Li

c indicates
the ordering of the signal in time up to its length Li

c.
This framework assumes that each signal xi

c(t) can be
represented by a linear mapping in terms of its autocorrela-
tion. Note that this differs from MSSA in that the assumption
has been reduced to the autocorrelation of each single sig-
nal, rather than the original assumption of a linear mapping
in terms of the average correlation of a whole class of sig-
nals. As such, each signal can be represented by the first m
orthonormal vectors ordered by the signal’s accumulated en-
ergy, where m � Li

c. These vectors span a subspace Y i
c;

thus a class of signals is effectively represented by a set of
subspaces {Yc}, a relaxation similar to a Gaussian mixture
rather than a single Gaussian distribution.

This representation provides more flexibility for a class
with non-gaussian noise, and also scales well with an increas-
ing number of signals per class. That implies mainly two
points: a signal can be modeled independently and added to
the class as another subspace, without needing to recalculate a
single model for the whole class; and the trade-off problem of
compactness ratio and representativity is slightly alleviated.
The dimension of subspaces m, corresponding to the signal’s
compactness ratio, is selected empirically during the train-
ing. For a given unknown input bioacoustic signal xin(t) of
length Lin, the task is to compute a subspace Yin and predict
its corresponding bioacoustic class (e.g. species) based on the
nearest subspace.

2.2. Representation by SSA subspaces

Here we review the representation by a SSA subspace; for
that, consider a single signal x(t). First, we apply a sliding
window over x(t) to turn the 1−dimensional signal of length
L in a sequence of n lagged vectors of length d arranged in a
Hankel matrixX ∈ Rd×n as:

X =


x1 x2 · · · xn

x2 x3 · · · xn+1

...
. . .

...
xd xd+1 · · · xd+n−1

 , (1)

where the number of columns n is the number of desired os-
cillatory components (or principal components), which has a
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direct correspondence with the maximum delay of the auto-
correlation. Therefore, the total number of columns in matrix
X is given by relationship n = L − d + 1. Note that the
anti-diagonal elements inX are equal.

The singular value decomposition (SVD) of the autocor-
relation matrix X>X is performed to find the directions of
maximum variance of the Hankel matrix X; that is, for this
case: UΛU> = X>X , where the columns of U ∈ Rn×n

corresponds to the eigenvectors of X and the diagonal of
Λ corresponds to the singular values λj (j = 1, . . . , n),
i.e. diag(Λ) = λ1, λ2, . . . , λn in decreasing order. Given
the compactness ratio m, the leftmost matrix U∗ ∈ Rn×m

from U is selected, containing the first m eigenvectors cor-
responding to the highest eigenvalues. The Hankel matrix
X is projected onto the subspace spanned by U∗ to obtain
Y = XU∗ ∈ Rd×n, which is the bestm-rank approximation
ofX and spans the subspace Y that characterizes our signal.

In our classification framework, we utilize the previous
procedure to compute basis matrices Y i

c ∈ Rd×m for a SSA
subspace Y i

c corresponding to each reference signal xi
c(t).

2.3. Canonical Angles

After modeling each signal as a SSA subspace by computing
the set of basis vectors which maximizes variance, we need to
compute the distance between the subspaces to perform clas-
sification. The natural metric for subspaces is the similarity,
obtained from the canonical angles [19]. Accordingly, in our
framework, canonical angles are used as the distance measure
between two bioacoustic signals.

The standard approach to measure the canonical angles
between subspaces Y1 and Y2 is to calculate the singular val-
ues {λj}mj=1 of the correlation matrix between their basis ma-
trices Y1,Y2 ∈ Rd×m, i.e. solving the SVD of V ΛV > =
Y >1 Y2. This corresponds to finding the rotation of each ba-
sis that is closest to the opposing subspace. From solving
this problem, the canonical angles can be obtained by θj =
cos−1(λj), where j = 1, . . . ,m.

2.4. Grassmann Manifold

Now, we introduce here the concept of Grassmann manifold
and how it is useful to correspond subspaces to vectors. The
essence is to make a one-to-one mapping such that the simi-
larities between subspaces is preserved, simplifying the rep-
resentation and allowing general methods to be applicable.

Grassmann manifold G(m, d) is defined as the set of m-
dimensional linear subspaces of Rd. It is an m(d − m)-
dimensional compact Riemannian manifold and can be de-
rived as a quotient space of orthogonal groups G(m, d) =
O(d)/O(m)×O(d−m), whereO(m) is the group ofm×m
orthonormal matrices.

A Grassmann manifold can be embedded in a reproduc-
ing kernel Hilbert space by the use of a Grassmann kernel.

In this case, the most popular kernel is the projection kernel
kp, which can be defined as kp(Y1,Y2) =

∑m
j=1 cos2 θj ,

which is homologous to the subspace similarity. We can
measure the distance between two points on a Grassmann
manifold by using this projection kernel [20], and a sub-
space Y can be represented by a vector with regards to a
reference subspace dictionary {Yq}Nq=1 as y = kp(Y ,Yq) =

[kp(Y ,Y1), kp(Y ,Y2), . . . , kp(Y ,YN )] ∈ RN .

2.5. Grassmann Discriminant Analysis

We introduce a discriminatory mechanism to separate the
classes of signals, which is the Grassmann discriminant anal-
ysis (GDA). Basically, GDA is conducted as kernel LDA
with the Grassmann kernels. We first outline the algorithm of
linear discriminant analysis (LDA) [21]. Let x1, . . . ,xN

be the data vectors and y1, . . . , yN (yi ∈ 1, . . . , C) be
the class labels. Each class c has Nc number of samples.
Let µc = 1

Nc

∑
i|yi=c xi be the mean of class c, and

µ = 1
N

∑
i xi be the overall mean. LDA searches for the

discriminant directionw which maximizes the Rayleigh quo-
tient Ra(w) = w′Sbw/w

′Sww where Sb and Sw are the
between-class and within-class covariance matrices respec-
tively:

Sb =
1

N

C∑
c=1

Nc(µc − µ)(µc − µ)>, (2)

Sw =
1

N

C∑
c=1

∑
i|yi=c

(xi − µc)(xi − µc)
>. (3)

The optimalw is obtained from the largest eigenvector of
S−1w Sb. Since S−1w Sb has rank C−1, there are C−1 optima
W = [w1, . . . ,wC−1]. By projecting data onto the space
spanned byW , we achieve dimensionality reduction and fea-
ture extraction of data onto the most discriminant subspace.

Kernel LDA [22, 23, 24] can be formulated by using the
kernel trick as follows. Let Γ : Rd → F be a non-linear
map from the input space Rd to a feature space F , and Γ =
[γ1, . . . ,γN ] be the feature matrix of the mapped training
points γi. Assuming w is a linear combination of those fea-
ture vectors,w = Γα, we can use the kernel trick and rewrite
the Rayleigh quotient in terms of α as:

Ra(α) =
α>Γ>SbΓα

α>Γ>SwΓα
=

=
α>K(V − eNe>N/N)Kα

α>(K(IN − V )K + σ2IN )α
=

=
α>Σbα

α>(Σw + σ2IN )α
, (4)

where K is the kernel matrix, eN is a vector of ones that has
length N , V is a block-diagonal matrix whose c-th block is
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the matrix eNce
>
Nc
/Nc, and Σb = K(V − eNe>N/N)K.

For example, the kernel matrix, K, is calculated as the simi-
larity matrix between subspaces Yq and Yw. The term σ2IN
is used for regularizing the covariance matrix Σw = K(IN−
V )K. It is composed of the covariance shrinkage factor σ2 >
0, and the identity matrix IN of size N . The set of opti-
mal vectors α are computed from the eigenvectors of (Σw +
σ2IN )−1Σb.

We apply the GDA algorithm to the reference subspaces
Y c
i to generate reference vectors yc

i . When given an unknown
bioacoustic signal xin(t), we compute its SSA subspace Yin

and map it onto the manifold to generate a vector yin; then
we predict its corresponding bioacoustic class (e.g. species)
based on the nearest reference vector (1-NN).

3. EXPERIMENTAL RESULTS

In this section, we evaluate the validity of the proposed GSSA
through an experiment using the Anuran records dataset, that
was also used in [8]. This dataset is described in detail in
Table 1. It consists of 60 bioacoustic signals with different
duration recorded in Amazon rainforest containing anuran’s
croaks and ribbits and various real background noises from
the surrounding nature. Anura is the name of an order of an-
imals in the class Amphibia that includes frogs and toads, so
the diversity of signal is complex. The classes of this dataset
consists of 10 species of anurans.

We evaluate GSSA against 2 variants of MSSA. The vari-
ant MSSA-I refers to the conventional method, where the
class of signals is assumed to be modeled as a linear map-
ping in terms of the average correlation of its signals. That
means that 1 reference subspace is computed to represent
each species, regardless of the amount of records the class
contains. The variant MSSA-II computes 1 subspace for each
bioacoustic signal. for example, the specie Rhinella g. has
5 records, then we produce 5 subspaces. In this scheme we
achieve 60 subspaces. However, MSSA-II does not have a
discriminant mechanism.

We performed a 10-fold cross-validation by dividing the
signals randomly, with 30 for training and 30 for test, and al-
ways ensuring that at least one signal of each anuran species
is present in both groups. The parameters were varied in the
following manner: the number of lagged vectors n was var-
ied from 10 to 50 and the dimension of SSA subspaces were
varied from 3 to 9.

The experimental results can be seen in Table 2. The ac-
curacy refers to the average among all folds, and the stan-
dard deviation is calculated from the folds assuming a Gaus-
sian distribution. First, we can see that MSSA-II outperforms
MSSA-I by approximately 3%, which shows that relaxing the
linearity assumption is effective to improve performance. But
the main point in this experiment is that although MSSA-I
has recently been shown to be the state-of-art in bioacoustics
classification [8], we can note that GSSA outperforms MSSA

Table 1. Anuran records dataset. The columns min and max
stand for the minimum and maximum time duration in sec-
onds of each record in the set. This parameter gives an idea
on how different the length of the signals can be.

Time length (s)
ID Species no Records min max
(a) Adenomera a. 8 12 360
(b) Adenomera h. 11 40 187
(c) Ameerega t. 5 11 52
(d) Hyla m. 11 8 56
(e) Hypsiboas cin. 4 6 238
(f) Hypsiboas cor. 4 67 346
(g) Leptodactylus f. 4 13 118
(h) Osteocephalus o. 3 3 72
(i) Rhinella g. 5 13 210
(j) Scinax ruber 5 7 62

Summary 60 94± 113.26(s)

by more than 11%. This result is a compelling evidence that
the discriminant mechanism of the proposed method is able to
enhance the performance of bioacoustic classification in this
subspace representation paradigm.

Table 2. Results for the experiment with the Anuran data.
The accuracy refers to the average among all folds.

Method Accuracy (%) Std. Deviation
GSSA 71.33 3.91
MSSA-I 60.17 4.11
MSSA-II 62.88 4.08

4. CONCLUSIONS

In this paper we have proposed Grassmann singular spectrum
analysis (GSSA), an extension to MSSA, to address more
effectively the classification of bioacoustic signals. The key
idea of our proposed method is twofold: relaxing the assump-
tion that a class is composed of linear combinations of the
reference signals to that it consists of a set of subspaces; and
simplifying bioacoustic signal subspace representation by
mapping the subspaces onto a Grassmann manifold, to then
introduce a discriminatory mechanism for class separation by
using Grassmann discriminant analysis (GDA). Our method
also inherits various advantages of MSSA, such as low stor-
age, consistent compactness ratio selection, signal length
free formulation, and no need preprocessing techniques. The
validity of GSSA was demonstrated through a classification
experiment with the Anuran data where it outperformed the
state-of-the-art method MSSA.
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