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ABSTRACT

This paper considers an effective method for nonlinear acoustic echo
cancellation (NL-AEC). More specifically, we model the nonlinear
echo path by a latent state vector capturing the coefficients of a mem-
oryless processor and a linear finite impulse response filter. To es-
timate the posterior probability distribution of the state vector, an
elitist particle filter based on evolutionary strategies (EPFES) has
been proposed, which evaluates realizations of the latent state vec-
tor based on long-term fitness measures. This method includes a
manually-tuned recursive calculation of the probabilities that the ob-
servation has been produced by the state-vector realizations. For
avoiding this manual tuning, we introduce a new approach denoted
as Elitist Resampling Particle Filtering (ERPF) which can also be
shown to combine the advantages of the Sequential Importance Sam-
pling Particle Filter (SIS-PF) and the Sequential Importance Sam-
pling/Resampling Particle Filter (SIR-PF). This new approach al-
lows universal use and leads to superior system identification perfor-
mance compared to both the original EPFES as well as the SIR-PF,
as verified for a simulated scenario and a real smartphone recording.

Index Terms— Nonlinear System Identification, Particle Fil-
ters, Bayesian Estimation, Nonlinear Acoustic Echo Cancellation.

1. INTRODUCTION

Since decades, acoustic echo cancellation (AEC) has been an active
research area. Starting from the early linear acoustic echo cancel-
ers [1], the complexity of algorithms and models have been growing.
This translated into a rich literature of algorithms which are able to
estimate complex linear acoustic echo paths both efficiently and ac-
curately [2–5]. Driven by the distortions produced by miniaturized
loudspeakers in portable devices, sophisticated and more complex
nonlinear AEC (NL-AEC) algorithms and models have emerged
based on Volterra filters [6, 7], artificial neural networks [8], power
filters [9], Legendre polynomials [10] and functional link adaptive
filters [11]. While the models vary widely, their parameters are
almost always determined by solving linear problems, using e.g.,
the Least Mean Square (LMS) algorithm or its extensions.

On the other hand, particle filters have received increasing at-
tention in various fields to identify nonlinear systems, e.g., in fi-
nance [12], source tracking [13] and navigation [14]. Particle fil-
ters approximate the posterior density of a latent state vector by a
set of weighted particles, where each particle corresponds to a pos-
sible realization of the latent state vector [15]. Unlike the extended
Kalman filter, which can be used for the task of nonlinear system
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identification, a particle filter imposes no strong constraints on the
system model, rendering it a suitable approach for a wide range of
applications. This generality motivated researchers to develop many
different particle filtering schemes [16–20] which vary in complex-
ity and performance. In this paper, we propose the elitist resampling
particle filter (ERPF) to fuse the advantages of the Sequential Impor-
tance Sampling Particle Filter (SIS-PF) and the Sequential Impor-
tance Sampling/Resampling Particle Filter (SIR-PF) [21] by exploit-
ing an evolutionary selection of elitist particles introduced in [22].
The comparison between the proposed ERPF and the EPFES pro-
vides additional theoretical insights and highlights that despite re-
quiring no tuning step, the proposed approach outperforms the orig-
inal one.

This paper is organized as follow: In Section 2, the NL-AEC
scenario is introduced and the concept of Significance Aware (SA)
adaptive filtering [23] is reviewed. In Section 3, a brief overview of
two generic particle filtering algorithms is given while in Section 4,
the proposed ERPF is introduced. The relationship to previous work
is discussed in Section 5 and is followed by the experimental evalu-
ation for a simulated AEC scenario and a real smartphone recording
in Section 6. Finally, conclusions are drawn in Section 7.

2. THE HAMMERSTEIN MODEL

In this section, we introduce the NL-AEC scheme characterized by
a memoryless preprocessor followed by a linear finite impulse re-
sponse (FIR) filter. As shown in Figure 1, the memoryless prepro-
cessor f(sn, ân) models the nonlinearity introduced by the loud-
speaker while the FIR filters ĥdirect,n and ĥcomp,n jointly model the
linear acoustic echo path from the loudspeaker to the microphone
[24] as discussed below.

2.1. The memoryless preprocessor

As illustrated in Figure 1, at time instant n, the speech signal seg-
ment sn = [sn, sn−1, ..., sn−M+1]

T is first distorted by the loud-
speaker nonlinearities. This distortion is modeled by

d̂n = [d̂n, d̂n−1, ..., d̂n−M+1]
T = f(sn, ân), (1)

where d̂n is the distorted speech signal vector. The nonlin-
ear function f is parameterized by the estimated vector ân =
[â0,n, â1,n, ..., âP−1,n]

T. In the following, we model the nonlinear-
ity as a P-th order polynomial

f(sn, ân) =

P−1∑
υ=0

âυ,nL2υ+1(sn) (2)
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Fig. 1. NL-AEC scenario with SA-based system identification.

which is based on the odd-order Legendre polynomials of the first
kindL2υ+1 [10,23,24]. It is worth mentioning that the use of particle
filters in the NL-AEC context is not limited to this model, so that
other nonlinear functions can be used just as well.

2.2. The linear acoustic echo path

The linear acoustic path between the loudspeaker and the micro-
phone at time n is estimated by means of a linear FIR filter of length
M ĥn = [ĥ0,n, ĥ1,n, ..., ĥM−1,n]

T. Thus, the microphone signal
estimate can be written as

ŷn = ĥ
T
nf(sn, ân). (3)

2.3. The Significance-Aware Approach

Two sets of parameters are needed to describe the entire acoustic
echo path: the memoryless preprocessor vector ân and the linear
FIR filter ĥn. However, since ĥn is typically a long filter, using a
computationally expensive approach, e.g., particle filters, to estimate
all coefficients is of limited practical interest. In order to overcome
this problem, the SA-principle is used [23, 24], which intends to re-
duce the computational load by focusing on the direct-path of the
estimated linear acoustic echo path ĥn to estimate the parameters
of the nonlinear preprocessor. Thereby, we start by estimating the
entire linear FIR filter ĥn using the Normalized Least Mean Square
(NLMS) algorithm

ĥn+1 = ĥn +
µ

d̂
T
nd̂n + ε

d̂nen, (4)

where µ is a scalar step size, ε is a positive constant which prevents
division by zero and the error signal en = yn−ŷn relates the current
observation to its estimate. The FIR filter ĥn is then split into two
parts: a direct acoustic path from the loudspeaker to the microphone
centered around the peak at I (0 < I < M ), with a length 2R+ 1

ĥdirect,n = [ĥI−R,n, ĥI−R+1,n, ..., ĥI+R,n]
T (5)

which is expected to contain the most significant part of ĥn, and a
complementary part

ĥcomp,n = [ĥ0,n, ..., ĥI−R−1,n, ĥI+R+1,n, ..., ĥM−1,n]
T (6)

which contains the rest of ĥn coefficients. To compensate the es-
timation errors in ĥn during the estimation of the preprocessor pa-
rameters ân, we define the state vector according to [24]

x̂n = [ân, ĥdirect,n]
T (7)

which is estimated using particle filters. Since the system now de-
scribes the nonlinearity and the direct acoustic path only, we further
decompose the nonlinearly distorted signal d̂n in a similar manner

d̂direct,n = [dI−R,n, dI−R+1,n, ..., dI+R,n]
T

d̂comp,n = [d0,n, ..., dI−R−1,n, dI+R+1,n, ..., dM−1,n]
T.

(8)

As illustrated in Figure 1, the direct-path and complementary com-
ponents for the received microphone signal yn are also decomposed

ydirect,n = yn − ŷcomp,n = yn − ĥ
T
comp,nd̂comp,n. (9)

The direct path components d̂direct,n and ydirect,n are then used to
estimate the latent state vector x̂n defined in (7).

3. PARAMETERS ESTIMATION USING
PARTICLE FILTERS

3.1. Sequential Importance Sampling Particle Filter

The Bayesian Minimum Mean Square Error (MMSE) estimate of the
state vector x̂n is given by

x̂n = E{xn|y1:n}, (10)

where y1:n = [y1, y2, ..., yn]
T. However, due to the nonlinear math-

ematical relationship between the state vector xn and the observa-
tion vector yn, a closed-form solution of the Bayesian estimator is
not available. A particle filter evaluates the expectation, or equiva-
lently the integral, by approximating the posterior distribution by

p(x0:n|y1:n) ≈
Np∑
i=1

w(i)
n δ(x0:n − x

(i)
0:n), (11)

where {x(i)
0:n, w

(i)
n }Np

i=1 are theNp particles x(i)
0:n and their associated

weights w(i)
n , which are normalized to fulfill

∑Np

i=1 w
(i)
n = 1. The

weights are calculated according to the importance sampling prin-
ciple [16]: assume that the only access available to p(x0:n|y1:n)
is by evaluating a proportional quantity π(x0:n|y1:n). Then, in or-
der to approximate p(x0:n|y1:n), one can draw samples from an-
other easily accessible density denoted q(xn|y1:n,x0:n) which has
a strict support over p(x0:n|y1:n) and compensates for the differ-
ence through weighting the samples by

w(i)
n =

p(x
(i)
0:n|y1:n)

q(x
(i)
n |y1:n,x0:n)

∝ π(x
(i)
0:n|y1:n)

q(x
(i)
n |y1:n,x0:n)

. (12)

By exploiting the recursive nature of the Bayesian filter [18]

p(x0:n|y1:n) =
p(xn|xn−1)p(yn|xn)

p(yn|y1:n−1)
p(x0:n−1|y1:n−1), (13)

and through an appropriate choice of the importance density
q(x

(i)
n |y1:n,x0:n), one arrives at the weight calculation [16–18]

w(i)
n ∝ w

(i)
n−1

p(x
(i)
n |x(i)

n−1)p(yn|x
(i)
n )

q(x
(i)
n |x(i)

n−1, yn)
. (14)

Furthermore, if one samples from the state transition density
p(x

(i)
n |x(i)

n−1), the weight calculation in (14) reduces to [18]

w(i)
n ∝ w

(i)
n−1p(yn|x

(i)
n ). (15)
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While being attractive for its simplicity, the SIS-PF exhibits an un-
avoidable drawback: After few iterations, all weights but one will be
equal to zero, which is known as the degeneracy problem [25, 26].

On the other hand, by examining (15), the SIS-PF maintains a
memory for each particle through the weight propagation. This will
mitigate the impact of an observed outlier by considering the previ-
ous observations as well in addition to the current one.

3.2. Sequential Importance Sampling/Resampling Particle
Filter

SIR-PFs, also known as Bootstrap filters [21], address the degener-
acy problem by resampling after each iteration. In [27], resampling
was motivated by the fact that a sample with a low weight will have
a low impact on the estimation. Thereby, samples with small weight
are discarded while samples with sufficiently large weight are repli-
cated such that all particles will have the same weight 1/Np. As a
result, the new weights after propagation are obtained directly via

w(i)
n ∝ p(yn|x(i)

n ). (16)

While solving the degeneracy problem, the SIR-PF introduces an-
other, namely sample impoverishment, i.e, after few iterations, few
particles with significant weights will dominate the estimation [16].

Many adaptive resampling schemes have been developed [16–
18, 21, 28]. In this paper, adaptive resampling is not discussed and,
for clarity, only a basic SIR-PF which resamples after each itera-
tion is considered. As an efficient alternative to adaptive resampling,
the posterior Probability Density Function (PDF) p(x0:n|y1:n) can
by approximated by means of a continuous PDF. For instance, this
has been realized for the GPF in [29]. However, by resampling the
entire set of particles, the SIR-PF, and as a consequence the GPF,
re-initiate all particles’ memory, resulting in an increased focus on
instantaneous likelihoods.

4. THE ELITIST RESAMPLING PARTICLE FILTER

The SIS-PF and SIR-PF can be seen as two extremes. While the
SIS-PF is the optimum approach in the sense of not discarding any
path, a realistic limitation of the number of particles will result in
weight degradation. On the other hand, the SIR-PF tackles this issue
by favoring a local solution at each iteration while eliminating many
possible paths due to their low local probabilities or likelihoods. This
motivates the introduction of a hybrid resampling scheme, offering
a compromise between the two extremes. To this end, we divide the
particle population into two sets, an elitist set ΘE,n and a non-elitist
set ΘNE,n. Non-elitist particles are discarded and replaced by new
particles while elitist particles are not discarded by resampling at the
end of each iteration, preserving the elitist particles’ memory [22].

It is intuitive to use a weight threshold wth in deciding which
particles are elitist and which are discarded. Moreover, we state that
the goal is to discard a maximum number of low-weighted particles
without discarding ’good’ particles. This is accomplished by speci-
fying good particles as the ones being directly drawn from the poste-
rior distribution. From the weights equation (12), such particles will
have normalized weights equal to 1

Np
. Thus, we set the threshold as

wth = 1
Np

, and assign the particles as follows

x(i)
n ∈

{
ΘE,n if w(i)

n ≥ wth

ΘNE,n if w(i)
n < wth.

(17)

After discarding the non-elitist particles, substitution particles need
to be drawn. To this end, elitist particles are used to construct a con-
tinuous density p̂(x(i)

0:n|y1:n), which new particles are drawn from.

Afterwards, all particles are advanced through p(xn+1|xn), result-
ing in the newly spawned particles being distributed according to

x
(i)
n+1,new ∼ p̂(x0:n|y1:n)p(xn+1|xn). (18)

Introducing the above density into the weight equation of (12) gives

w
(i)
n+1,new ∝ p(yn+1|x(i)

n+1). (19)

One should notice that this update rule is identical to (16).
On the other hand, the elitist particles are not resampled or changed
and by following the same derivation as for the SIS-PF, we arrive at

w
(i)
n+1,elitist ∝ w

(i)
n p(yn+1|x(i)

n+1). (20)

Thus, the overall weight update rule is

w
(i)
n+1 ∝

{
w

(i)
n p(yn+1|x(i)

n+1) if x(i)
n ∈ ΘE,n

p(yn+1|x(i)
n+1) if x(i)

n ∈ ΘNE,n.
(21)

The advantage of such an approach is that introducing the extra
memory for the elitist particles increases the robustness against out-
liers compared to the SIR-PF. This is reflected in the weights prop-
agation in (21), where the weights of the elitist particles depend on
previous observations as well as current ones. Similar to the GPF,
drawing the substitution particles from a continuous density, the par-
ticle population will have more diversity compared to the SIR-PF,
thus mitigating the diversity decay effect.

5. RELATION TO PRIOR WORK

As mentioned earlier, this work is based on the EPFES introduced in
[22] aiming at avoiding any heuristic parameter choices to guarantee
robustness and thus allow universal use. In contrast, the approach in
[22] was heuristically motivated and incorporated a manually-tuned
recursive calculation of the particle weights:

w
(i)
n+1 ∝

{
w

(i)
n

λ
p(yn+1|x(i)

n+1)
1−λ if x(i)

n ∈ ΘE,n

p(yn+1|x(i)
n+1) if x(i)

n ∈ ΘNE,n

(22)

where λ has to be optimized for the application at hand.
In this paper, we formulated the new ERPF algorithm as a hybrid
combination of SIS-PF and SIR-PF in Section 4. This provides new
theoretical insights and leads to a version of [22], where the weight
calculation in (22) is replaced by the update of (21) thereby avoiding
any tuning parameter and allowing universal use.

6. EXPERIMENTS RESULTS

The ERPF is compared to an SIR-PF [21] which uses a systematic
resampling scheme, the GPF [29] and the EPFES [24] (with an op-
timized λ in (22)). In [24] a comparison of the EPFES to a well-
known nonlinear acoustic echo canceller based on a Hammerstein
Group Model (HGM) shows that the EPFES outperforms the HGM-
based approach.
In both experiments the NLMS was first initialized for 0.1s to ob-
tain an initial Room Impulse Response (RIR) estimate ĥn of length
Lh = 256 to allow for an initial split of ĥn according to the SA-
principle into two parts with length Lhd = 11 for the direct path.
The nonlinear function f(sn, ân) in Figure 1 is approximated us-
ing the first three odd-order Legendre polynomials of the first kind,
υ = {1, 2, 3} in (2). Afterwards, the different filters (ERPF, EPFES,
GPF, SIR-PF) are realized with Np = 100 particles to estimate the
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Fig. 2. ERLE of NLMS, SIR-PF, GPF, EPFES and ERPF for a syn-
thesized NL-AEC scenario.

Synthesized Recorded
Filter ERLEon ERLEoff ERLEon ERLEoff

ERPF 21.4 21.5 13.8 15.7
EPFES 19.7 21.2 12.9 14.6
SIR-PF 15.4 13.6 11.1 12.9
GPF 16.1 13.3 11.5 13.1
NLMS 14.0 7.4 9.8 9.3

Table 1. Temporal average ERLE for NL-AEC in dB.

state vector x̂n = [ĥdirect,n, ân] of length 14. Each filter produces
online estimates during an adaptation period of 9s, which is half of
the speech signal length. In the next 9s, the estimated state vector x̂n
is kept fixed and used in evaluating how well each filter’s estimate
generalizes. Note that this is an important indicator for the perfor-
mance during double-talk situations. As an evaluation measure we
exploit the Echo Return Loss Enhancement (ERLE)

ERLEn = 10 log10
E{y2n}
E{e2n}

, where en = yn − ŷn (23)

where ŷn is the estimated microphone signal obtained using the es-
timated coefficients [ân, ĥdirect,n, ĥcomp,n].
Each experiment is repeated 10 times, and the average results are
used and presented. In order to provide a reference for comparison,
the ERLE of a linear AEC approach, i.e., the NLMS algorithm with
an FIR filter of length 256 is also evaluated for each scenario.

6.1. Simulated nonlinearity

In this experiment, a speech signal s of a female speaker with a total
length of 18 seconds was used. The nonlinearity was generated using

dn =
1

4
tanh(4sn), (24)

as it has already been employed in [24]. Afterwards, the distorted
loudspeaker signal dn was convolved with a recorded RIR and su-
perimposed by additive white noise at an SNR level of 30dB.

The ERLE values of each filter are shown in Figure 2. To pro-
vide a quantitative comparison, the temporal averages of the ERLE
during adaptation and after freezing the parameters are provided in
Table 1.

As the results show, during adaptation (up to t=9s), both the
ERPF and the EPFES outperform SIR-PF and GPF by a very sig-
nificant margin and despite the absence of the tuning parameters,
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Fig. 3. Performance comparison of NLMS, SIR-PF, GPF, EPFES
and ERPF for NL-AEC with real smartphone recordings.

the ERPF outperforms the EPFES. More importantly, by looking at
the ERLE for frozen coefficients (t=9s to t=18s), the ERPF and the
EPFES keep outperforming the GPF and SIR-PF. This shows that the
ERPF and EPFES do not outperform the other filters due to an in-
creased adaptation speed or over-adaptation to the actual signal, but
rather because of a more accurate description of the unknown sys-
tem. Moreover, the SIR-PF and GPF performed similarly, which is
consistent with the findings in [29]. Finally, the initial convergence
speed of the ERPF and the EPFES reflects how fast the filters adapt
to a new system and as a consequence, it seems reasonable to expect
an according tracking behavior in case of a time-varying echo path.

6.2. Real smartphone recording

In this experiment, a male speech signal was emitted by a smart-
phone loudspeaker, which introduces an unknown nonlinearity, and
was recorded by a microphone placed in a close proximity with
an SNR level of 20dB. Again, the ERLE and the temporal average
ERLE values are shown in Figure 3 and Table 1, respectively.

It is clear from the results, that ERPF is an effective algorithm
when used with real smartphone recordings. The performance differ-
ence between the ERPF/EPFES and the other filters (GPF, SIR-PF)
is relatively high, both for online adaptation (up to t=9s) and frozen
filter coefficients (t=9 to t=18s). Furthermore, it is visible from Ta-
ble 1 that the ERPF generalizes better compared to the (manually
tuned) EPFES for the real smartphone recording.

Finally, it should be mentioned that the computational cost of the
EPFES is discussed in [24] and is estimated to be not more than 1.5
times the multiplications per sample (MPS) of a stand-alone NLMS
algorithm, and 0.37 times the MPS of a 4-branch HGM. Due to the
similarities between the EPFES and the ERPF, these estimates also
hold for the ERPF.

7. CONCLUSION

In this paper, we have introduced the ERPF as a new algorithm
for NL-AEC based on the EPFES approach introduced in [22], but
avoiding all tuning parameters. The ERPF is formulated as a hybrid
of two generic and widely-known particle filters, namely, the SIS-PF
and the SIR-PF, and there the algorithm’s performance was evalu-
ated for two speech signals in two different scenarios, namely, for a
synthesized nonlinearity and for a commercial smartphone. The re-
sults have shown that despite having no tuning parameters, the ERPF
achieves a better system identification performance compared to the
(manually optimized) EPFES, the SIR-PF and the GPF for both sce-
narios so that ERPF can be viewed as a universally applicable ap-
proach to NL-AEC with superior peformance.
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