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ABSTRACT

Non-intrusive estimators for acoustic parameters like the direct-to-

reverberation ratio (DRR) are useful tools but still perform weakly as

shown in the acoustic characterization of environments (ACE) chal-

lenge. In this paper, we develop a novel dual-channel metric based

on the modulation energy domain for DRR estimation. In contrast to

established modulation based single-channel metrics like the speech-

to-reverberation modulation energy ratio (SRMR), we exploit the

spatial information from two microphones as well as the temporal

dynamics in the modulation energy domain. The developed metric

shows a strong linear correlation to the DRR, which allows a simple

mapping. It is shown that the metric is robust against the microphone

array configuration, room characteristics and the speech signal. The

proposed metric is compared to a reference method based on the

spectral variance of the room transfer functions, and both metrics are

evaluated using simulated and measured data. In our experiments,

the proposed metric achieved a higher correlation and lower RMSE

compared the reference method, and outperforms existing SRMR

based DRR estimators.

Index Terms— Direct-to-reverberation ratio, speech modula-

tion energy

1. INTRODUCTION

The acoustic properties of rooms and measured positions in a room

are often characterized in terms of acoustic measures such as the

reverberation time and direct-to-reverberation ratio (DRR). The

DRR is a highly relevant and useful measure to describe the relative

amount of received reverberation at a microphone, which can be

used for example for dereverberation, or as a control parameter for

various applications like acoustic scene classification or automatic

speech recognition. In general, these acoustic parameters are com-

puted from the room impulse response (RIR) [1]. However, in many

applications, the RIR is not known and the parameters have to be

estimated non-intrusively from the observed signals.

The acoustic characterization of environments (ACE) challenge

[2] provided a framework to evaluate blind estimators for reverbera-

tion time (T60) and DRR. Whereas the general performance of sub-

mitted T60 estimators was satisfying, the performance of the submit-

ted DRR estimators left room for improvement. The main classes of

DRR estimators defined in [2] are analytical methods mainly based

on spatial information [3, 4], single spectral features [5, 6, 7], or

machine learning approaches using multiple features [8].

Non-intrusive single-channel metrics based on the speech mod-

ulation energy have been developed to measure speech quality or

This work was carried out as part of a research visit at the MuSAE Lab
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reverberation time [5, 9]. In [6], the speech-to-reverberation modu-

lation energy ratio (SRMR) was modified to measure the DRR. Al-

though these metrics have been applied to multichannel data, the spa-

tial information was only exploited by averaging the single-channel

measure over all channels. In [10], a dual-channel metric for DRR

estimation based on the spectral variance of the relative room trans-

fer function was proposed that was not included in the ACE chal-

lenge.

In this paper, we aim at developing a modulation energy based

metric, which exploits multichannel information in addition to tem-

poral dynamics within the modulation energy domain. We propose

to use the normalized modulation energy difference between two mi-

crophone signals as a metric. It is shown that the temporal variance

of this metric has a high correlation with the DRR and can be there-

fore be mapped to the DRR using a simple linear function. The

proposed metric is compared to the spectral variance based metric

[10] and evaluated using the ACE challenge data.

2. SIGNAL MODEL AND PROBLEM FORMULATION

We assume that the m-th omnidirectional microphone signal xm(t)
can be described by a convolution of the anechoic speech signal s(t)
with the RIR hm(t), i. e.

xm(t) = hm(t) ∗ s(t), (1)

where t denotes the discrete time index and ∗ is the convolution op-

erator. The DRR at the m-th microphone is given by

DRRm =

∑td+t0
t=td−t0

h2
m(t)

∑td−t0
t=0 h2

m(t) +
∑

∞

t=td+t0
h2
m(t)

, (2)

where td denotes the time index of the direct sound peak and t0 cor-

responds to 2.5 ms as defined in [2].

In so-called blind estimation scenarios, the RIR hm(t) is un-

known such that the DRR has to be estimated from the observed

reverberant signals xm(t). The aim of this paper is to develop a

modulation energy-based metric that has a high correlation with the

DRR, and is robust against influences of the microphone array con-

figuration, the room characteristics, and the speech signal.

3. REVIEW OF DUAL-CHANNEL SPECTRAL

VARIANCE-BASED DRR ESTIMATOR

In [10] a DRR estimator was proposed using two microphones

based on the spectral variance of the logarithmic room transfer

function difference, i. e. the relative transfer function between the
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microphones. The m-th microphone signal in the frequency domain

Xm(ω) is assumed to be

Xm(ω) = Hm(ω)S(ω), (3)

where S(ω) is the frequency domain speech signal, Hm(ω) is the

m-th microphone acoustic transfer function, and ω is the angular

frequency. The logarithmic subtraction between first and second mi-

crophone signal therefore equals the subtraction between the room

transfer functions, i. e.

∆X(ω) = 20 log10 |X1(ω)| − 20 log10 |X2(ω)| (4)

= 20 log10 |H1(ω)| − 20 log10 |H2(ω)|. (5)

Finally the standard deviation σX , i. e. the spectral variability, of

∆X(ω) is computed over the frequency range of interest.

In [10], a polynomial mapping from σX to the DRR is proposed,

which has been trained on reverberant speech. To ensure a fair com-

parison, we investigate the metric σX itself and then find a suitable

mapping based on our used training data.

4. PROPOSED MODULATION ENERGY METRIC

4.1. Modulation energy analysis

The microphone signals xm(t) are analyzed in J subbands by ap-

plying bandpass filters aj(t) to each microphone signal, i. e.

xm(j, t) = aj(t) ∗ xm(t) (6)

for j = {1, . . . , J}. Then, the temporal envelope of xm(j, t) is

computed via the Hilbert transform H{·} by

em(j, t) =
√

x2
m(j, t) +H{xm(j, t)}2. (7)

The modulation spectrum energy per time frame n is computed by

applying K modulation bandpass filters bk(t) to the subband en-

velopes em(j, t), where k is the modulation subband index, applying

a window w(t) and summing the energy in each frame by

Em(j, k, n) =

(n+1)T−1
∑

t=nT

(

w(t− nT ) [bk(t) ∗ em(j, t)]
)2

, (8)

where T is the frame length and k = {1, . . . ,K}.

4.2. Proposed metric

To build a metric exploiting the spatial information between the mi-

crophones, we propose to utilize the per frame normalized modula-

tion energy difference between two microphones, i. e.

∆E(j, k, n) =
E1(j, k, n) − E2(j, k, n)

√

E2
1(j, k, n) + E2

2(j, k, n)
. (9)

In preliminary experiments, we observed that the temporal vari-

ability of ∆E(j, k, n) over n is related to the DRR. Note that

∆E(j, k, n) is dependent on the microphone spacing d: for small d,

the observed modulation energy becomes more similar between the

microphones, and for d → 0 we have ∆E → 0.

To measure the temporal variability of ∆E(j, k, n), we compute

its standard deviation by

σE(j, k) =

√

√

√

√

1

N

N
∑

n=1

(

∆E(j, k, n)− µE(j, k)
)2

(10)
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Fig. 1. Pearson correlation coefficients between acoustic frequency

averaged σE(k) per modulation band and the DRR for simulated

RIRs with varying distances, reverberation times, source angles and

speech signals, and a fixed microphone spacing d = 10 cm.

where µE(j, k) is the mean of ∆E(j, k, n), and N is the number of

frames. In order to craft a one-dimensional metric, we consider only

acoustic and modulation subbands with a high correlation with the

DRR, before computing the final averaged metric

σE =
1

JK

J
∑

j=1

K
∑

k=1

σE(j, k), (11)

where J and K are the number of acoustic and modulation subbands,

respectively. The choice of the acoustic and modulation filterbanks

is discussed in Sec. 4.3.

By inspecting the metrics σX and σE , both are based on a stan-

dard deviation, where σX is the spectral inter-channel variability,

and σE(j, k) is the inter-channel temporal variability in the modula-

tion domain for each subband separately.

4.3. Metric analysis and parameter selection

In this section, we present preliminary investigations using simulated

RIRs based on the image method [11] to find optimal parameters for

the acoustic and modulation filterbanks. While in preliminary ex-

periments, the metric σE(j, k) showed rather consistent correlation

with the DRR over varying source angles (array rotation), T60s and

speech signals, we noticed a clear dependence of the microphone

spacing.

We convolved speech signals with different RIRs by varying the

simulation parameters in the following ranges: T60 = [0.2, 1.4] s, a

source distance range of [1, 4] m, 3 different source angles and two

speech signals. For this investigation, we used acoustic and modula-

tion filterbanks with a wide frequency range and high resolution, i. e.,

a Gammatone filterbank [12] with J = 23 equivalent rectangular

bandwidth (ERB) bands between 125 Hz and 16 kHz, and K = 16
modulation bands logarithmically spaced between 4 Hz and 256 Hz

[5, 13].

Modulation frequency range: As preliminary experiments

showed an influence of the microphone spacing on the acoustic

subbands, but not on the modulation subbands, we first select the

optimal modulation frequency range for a given microphone spac-

ing. The correlation between the DRR and the acoustic frequency

averaged metric σE(k) for a wide range of modulation frequencies

is shown in Fig. 1 for a fixed microphone spacing d = 10 cm.

We can see that a strong correlation exists for modulation center

frequencies between 10 and 64 Hz.

Acoustic frequency range: To investigate the dependence of

σE(j, k) on the microphone spacing in the acoustic subbands, the
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Fig. 2. Dependency of the proposed metric for different microphone

spacings and varying lower cutoff frequency using simulated RIRs.

simulated RIRs dataset with varying parameters of source distance,

source angle, T60 and speech signals was extended to varying mi-

crophone spacings between d = [2, 50] cm. The standard deviation

σE(j, k) was then averaged for modulation bands between 10 and

64 Hz and over various acoustic frequency ranges. The results are

shown in Fig. 2 for a fullband frequency average (left subplot), ex-

cluding all frequencies below 693 Hz (middle subplot), and exclud-

ing all frequencies below 4530 Hz (right subplot).

Figure 2 reveals that for frequencies above the transition fre-

quency between plane wave and spherical wave propagation, i. e.

fd =
c

2πd
, (12)

where c is the speed of sound, the metric σE(j, k) is independent of

the microphone spacing and all points lie approximately on the same

monotonic line in relation to the DRR for all d ≫ c
2πfd

.

By averaging σE(j, k) in (11) only over the acoustic subbands

above a certain cutoff frequency fd, the microphone spacing influ-

ence can be completely removed. We can observe that in Fig. 2 in

the middle and right plot, the lowest frequency for the frequency

averaging was chosen such that the condition (12) is fulfilled for

d > 0.08 m and for d > 0.02 m, respectively. Interestingly, in [14]

it was also found that some spectral metrics for distance detection

work better for high-pass filtered signals.

Proposed parameter choice: Based on the two previous inves-

tigations, we propose to use K = 8 modulation bands, logarithmi-

cally spaced between 8 and 64 Hz. The filters aj(t) are implemented

as a Gammatone filterbank with J = 23 bands on a ERB scale be-

tween 125 Hz and 16 kHz. Based on the microphone distance d, in

(11) we consider only J∗ ≤ J bands above the transition frequency

fd given by (12).

5. EXPERIMENTAL SETUP AND RESULTS

5.1. Database and setup

For evaluation, we used multichannel RIRs from different datasets,

therefore including various rooms with the reverberation times T60,

microphone spacings and source positions summarized in Table 1,

resulting in a total of 26 multichannel RIRs, where only two channels

from each condition were used. We used 3 male and 3 female speech

signals from [15]. In addition, we used the ACE challenge dataset

and framework [2] in the last experiment in Sec. 5.4.

The signals were processed using a sampling frequency of

16 kHz. The proposed modulation based dual-channel metric used

the ERB and modulation-filterbanks as described at the end of

Sec. 4.3 on frames of 256 ms length with a Hamming window and
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Fig. 3. Relation between metrics and the DRR for different RIR

datasets and a single speaker.

a frame shift of 32 ms. The dual-channel spectral variance metric

was implemented using 1 s long frames with a Hann window and a

frame shift of 64 ms.

5.2. Noise-free single speaker performance assessment

Figure 3 shows the relations between the proposed and benchmark

metrics σE and σX , respectively, and the true DRR for different

datasets and a single speaker. We can observe that the proposed

metric σE has a clear linear relation to the DRR, while σX follows

a non-linear but still monotonic function. It is interesting to note

that towards low DRR the distribution curve of σX saturates and

the variance increases. This behavior can be expected as the spec-

tral variance of the room transfer functions depends on the density

of spectral peaks and notches caused by reflections. However, with

decreasing DRR, the density of the spectral peaks and notches sat-

urates such that the spectral variance does not increase further. In

contrast, the modulation based metric shows a clear linear relation

with DRR for a wide range of tested DRR values. The DRR of the

anechoic signals is limited to 30 dB for practical reasons.

5.3. Noisy multiple speaker performance assessment

The influence of noise and the variability introduced by multiple

speakers is shown in Fig. 4 for the metrics σE and σX . Different

signal-to-noise ratios (SNRs) are encoded as colors, whereas points

with the same color (denoting SNR) and the same x-value (same

DRR) are different speakers.

We can see that for σX , the variance of the relation increases

at low DRR, whereas for σE , the variance of the linear relation in-

creases at high DRR. The relations in Fig. 4 again suggest a linear

mapping for σE and a non-linear mapping for σX to the DRR. We

chose to use a 3rd order polynomial mapping for σX , since the orig-

inally proposed 5th order polynomial mapping [10] yielded worse

results using our data. We computed the mapping functions as a

least-squares fit from the mean of each metric per DRR condition to

the true DRR. Exemplary mapping functions obtained from the data

in Fig. 4 are shown as black lines.

5.4. Experimental results

We conducted two experiments to evaluate both metrics under test

for DRR estimation. In the first experiment, we used simulated

RIRs to train the third order polynomial mapping for σX and a lin-

ear mapping for σE . For training, we simulated rooms with T60

between 0.2 s and 1.1 s, three source angles, four source distances,

two female and two male speech signals, and added pink noise with

208



Database T60 (ms) source distance (m) DRR (dB) mic spacing (m)

Large conference room, Fraunhofer IIS 700 [2.50, 5.50] [-3.0, 3.4] 0.09

Variable acoustic lab, Bar-Ilan University {480, 630, 940} [1.30, 3.90] [-7.7, -3.4] 0.17

ACE devel. set, cruciform array (Office1, Lobby) [2] 330, 640 [1.10, 2.90] [-3.6, 3.1] 0.25

Small acoustic lab, AudioLabs Erlangen 280 [0.45, 2.80] [-4.1, 10.5] 0.09

OpenAIR (Warehouse, Reaktor, Church) [16] {2300, 3500, 15000} {28, 15, 26} [-8.6, 1.7] 0.17

Anechoic (simulation) 0 2 30 0.20

Table 1. Description of RIR databases
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Fig. 4. Relation of the metrics using the RIRs from Tab. 1 with pink

noise and various speech signals, and fitted mapping functions.

prop. Georganti
-20

-10

0

10

D
R

R
 e

rr
or

 (
dB

)

prop. Georganti
0

0.2

0.4

0.6

0.8

C
or

re
la

tio
n

prop. Georganti
0

2

4

6

8

10

R
M

S
E

Fig. 5. Results for training on simulated RIRs and evaluation on

measured RIRs.

three SNR levels, namely {5, 15, 25} dB. For evaluation, we used

the measured RIR datasets described in Table 1, one female and one

male speech signal and added recorded cafeteria noise [17] with the

SNRs {2, 12, 22} dB. Figure 5 shows the results of testing between

estimated and true DRR, namely the Pearson correlation coefficient

and the root-mean-squared error (RMSE). We can observe that the

proposed estimator yields a high correlation and lower RMSE than

Georganti’s metric. However, the boxplot shows that the DRR error

median of both estimators is biased, i. e. both show a tendency to

underestimate.

As second experiment, we used the data provided by the ACE

challenge [2] that is divided into a development and an evaluation

dataset. For training, we used the ACE development set together

with the measured RIR dataset shown in Table 1 as the number of

DRR conditions was very limited in the ACE development set with

only four different DRRs. We used two microphones of the cruci-

form array with a microphone spacing of 0.25 m. The results for

testing on the ACE evaluation set are shown in Fig. 6. We can ob-

serve that both estimators yield a much lower correlation to the DRR

provided by ACE than in the first experiment. The proposed modu-

lation based DRR estimator yields a slightly higher correlation and a
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Fig. 6. Results for ACE challenge

37% lower RMSE than Georganti’s spectral variance based estima-

tor. However, the correlation of both estimators is lower compared

to our experiments shown in Fig. 5.

After an in-depth analysis, it is hypothesized that the reasons for

the low performance in the ACE challenge are different for the two

estimators: As can be seen in Fig. 4, the variance of the proposed

modulation based estimator increases at high DRRs. The ACE data

is unfortunately biased towards high DRRs compared to the datasets

used in the first experiment. Georganti’s estimator performs better

in high than low DRR, but its variance increases in noisy conditions.

The challenging and sometimes highly non-stationary noise types

with low SNR are a further reason for the generally low performance

the estimators on the ACE evaluation set.

However, the proposed modulation based DRR estimator out-

performs the existing multichannel modulation based DRR estima-

tors that average the normalized speech-to-reverberation modulation

ratio (NSRMR) and overall speech-to-reverberation modulation ra-

tio (OSRMR) over all channels by a 312% higher correlation and a

20% lower RMSE [6] on the ACE Cruciform array data.

6. CONCLUSION

We have developed a dual-channel metric in the modulation energy

domain for DRR estimation. The proposed metric was analyzed and

tuned for a wide variety of acoustic conditions and was shown to

be robust against influences of different speakers, rooms, angles of

incidence and the microphone spacings. The proposed metric was

tested on both simulated and recorded data (i.e., from the ACE Chal-

lenge [2]), and shown to outperform a benchmark metric based on

the spectral variance of the relative room transfer functions on both

datasets. Furthermore, the proposed dual-channel modulation metric

outperforms existing modulation based metrics for DRR estimation.

Future work could aim at increasing the robustness in noisy con-

ditions and more advanced mapping techniques between the metric

and the DRR.
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