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ABSTRACT

The process of understanding acoustic properties of environ-
ments is important for several applications, such as spatial
audio, augmented reality and source separation. In this paper,
multichannel room impulse responses are recorded and trans-
formed into their direction of arrival (DOA)-time domain, by
employing a superdirective beamformer. This domain can be
represented as a 2D image. Hence, a novel image processing
method is proposed to analyze the DOA-time domain, and
estimate the reflection times of arrival and DOAs. The main
acoustically reflective objects are then localized. Recent stud-
ies in acoustic reflector localization usually assume the room
to be free from furniture. Here, by analyzing the scattered
reflections, an algorithm is also proposed to binary classify
reflectors into room boundaries and interior furniture. Ex-
periments were conducted in four rooms. The classification
algorithm showed high quality performance, also improving
the localization accuracy, for non-static listener scenarios.

Index Terms— Reflector Localization, Reflector Size
Classification, Room Impulse Response, Beamforming

1. INTRODUCTION

In audio processing, several areas can benefit from an accu-
rate estimation of the environmental acoustic properties. In-
formation about the main reflectors can aid audio forensic [1]
and simultaneous localization and mapping methods [2].
Moreover, knowledge of the reflected signal characteristics
can improve systems in source separation [3], dereverbera-
tion [4], and microphone array raking [5]. Another appli-
cation, that this paper targets, is the active manipulation of
reverberant spatial audio objects, for next generation audio
production [6]. Furthermore, augmented reality (AR) sys-
tems [7] can be improved by the auditory scene analysis
provided here. The main contributions of this paper are: a
novel method to localize acoustic reflectors given room im-
pulse responses (RIRs); a novel classification algorithm, that
analyzed the scattered reflections to classify reflectors into
large (i.e. room boundaries) and small (e.g. furniture).

This work was supported by the EPSRC Programme Grant S3A:
Future Spatial Audio for an Immersive Listener Experience at Home
(EP/L000539/1) and BBC as part of the BBC Audio Research Partnership.

One of the first attempts to localize acoustic reflectors was
proposed in [8]. There, the time-space domain of multichan-
nel RIRs was employed. This was done by assuming a linear
microphone array to be perpendicular to the analyzed direc-
tion. Later, in [9], the direction of arrival (DOA)-time do-
main was analyzed, by employing the plane-wave decompo-
sition method. Nevertheless, a large space was required to
be sampled, to correctly capture the sound wave. Spherical
harmonics were employed in [10, 11], to localize reflections.
As in [12], they employed continuous signals, however, hav-
ing issues with low SNRs. In [13], reflectors were localized
by first estimating the related image source positions [14],
having knowledge of the reflections’ times of arrival (TOAs).
However, microphones were assumed to be sparse in space.
A 2D geometric approach was presented in [15]. Its full 3D
extension was later proposed in [16], where reflectors were
localized by constructing ellipsoids, having axes proportional
to the reflection TOAs. Despite the good performance, it had
a high computational cost. In this paper, we propose a novel
approach, that exploits the reflection TOAs and DOAs. These
are estimated by a new 2D morphological image processing
method, which detects meaningful peaks in noisy spectral im-
ages, such as the DOA-time domain of multichannel RIRs.

Every state-of-the-art method that has been mentioned
above aimed to localize acoustic reflectors by observing their
specular reflections [17]. However, a correct analysis of the
scattered reflections can help achieving several goals [18].
For instance, it can lead to a discrimination between walls
and furniture, in a room. This kind of classification allows
production of synthetic RIRs [19], and estimation of reverber-
ant spatial audio object parameters [20]. To our knowledge,
in the literature, there is yet no method to classify acoustic
reflectors in terms of their spatial extension. To fill this gap,
in this paper, we propose a binary classification algorithm,
that uses the scattered reflections’ energy as feature.

In this paper, Sec. 2 presents novel methods to localize
and classify acoustic reflectors; in Sec. 3, experiments and
results are discussed; Sec. 4 draws the overall conclusion.

2. THE PROPOSED METHODS

We propose a new pipeline (see Fig. 1), to localize and clas-
sify acoustic reflectors. RIRs are employed, by defining them
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Fig. 1. The proposed pipeline, with the novelties in grey. Γe,l
contains the estimated TOAs and azimuth DOAs; ∆e,l con-
tains Γe,l and the elevations. RM stands for room model.

as ri,l(n) =
∑Tm

e=0 he,i,l(n − ne,i,l) + gi,l(n), where i and l
are the microphone and source indexes, respectively; n is the
discrete time index, Tm is the last early reflection, and gi,l(n)
the late reverberation. ne,i,l is the early reflection TOA, with
e being the reflection index (e = 0 indicates the direct sound).

2.1. The DOA-Time Domain

Multichannel RIRs can be transformed to the joint DOA-time
domain, where the acoustic energy is function of both az-
imuth DOA and time. This domain transformation is done
by using a superdirective array (SDA) beamformer [21]. Be-
fore employing the SDA, RIRs are band-pass filtered between
Ω1 = 2 kHz and Ω2 = 8 kHz, to avoid the poor low frequency
directivity, and the spatial aliasing at high frequencies.

The SDA is our 3D version [21] of [22], and it can be
applied to any kind of microphone array. Points in the 3D
Cartesian coordinates can be defined as X = [ux;uy;uz]

T =
[cos θ sinφ; sin θ sinφ; cosφ]T, where [·]T is the matrix trans-
pose operator, θ the azimuth, and φ the elevation. The array
manifold can be then written as a(ω, θ, φ) = exp(j ωc0AX),
where j =

√
−1, A contains the M microphones’ coordi-

nates, ω is the angular frequency, and c0 the sound speed.
The elements of the noise cross-spectral matrix S are: si,i′ =
sinc( ωc0 ||Ai −Ai′ ||), where Ai and Ai′ contain the i-th and
i′-th microphone coordinates, respectively, and || · || is the `2
norm operator. The regularization matrix is B = [S + qI]−1,
with q = 0.01 (empirically found) and I the identity matrix.
The SDA weights are: w(ω, θ, φ) = Ba

a∗Ba , where [·]∗ is the
complex conjugate transpose operator. w(ω, θ, φ) contains
the M microphone signals’ weights wi(ω, θ, φ).

Beamformed RIRs are produced by using the SDA as:

rB
l (n, θ, φ) = F−1

{
M∑
i=1

Ω2∑
ω=Ω1

wi(ω, θ, φ)Ri,l(ω)

}
. (1)

Ri,l(ω) is the ri,l(n)’s Fourier transform and F−1{·} the in-
verse Fourier transform operator. By setting φ = 0, beam-
formed RIRs are produced for each θ, and placed one next to
the others, to obtain the DOA-time domain (see Fig. 2).

2.2. Local Maxima Detection

In the DOA-time domain, the energy maximum coordinates
are the reflection TOAs and azimuth DOAs. A peak-picking
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Fig. 2. DOA-time domain example (left); local maxima de-
tector pre-processor output (center); local maxima detector
output (right), with estimated maxima (red crosses). Figures
are in greyscale (white means signal power is 1, black 0).

Dilation

Fig. 3. Block diagram for local maxima detection.

algorithm can be exploited to detect them. Automated peak
detection for 2D spectral images have been actively re-
searched for more than 30 years, in image processing and
bioinformatics [23, 24, 25]. The major challenges of 2D peak
detection algorithms is the distinction of artifacts from real
peaks, and also detecting peaks with overlapping resonances.
We propose a 2D peak detection algorithm modified from
the morphology-based method in [25], for meaningful peak
detection in the DOA-time domain images. Fig. 3 shows the
block diagram of the proposed 2D peak detection algorithm.

In the pre-processing stage, the input image is filtered by
a Gaussian kernel to reduce noise. A sound wave decreases
its energy by 6 dB every double of the traveled distance [26].
To compensate this bias, the original values in the DOA-time
domain are updated by y = y + 6log2(x), where y is the
energy level in dB and x is time in ms. The middle image of
Fig. 2 shows the result of this bias compensation. This image
is converted into two images by two morphological process:
erosion and dilation, then subtracted from the original image.
Two subtraction images are binarized and the erosion image
is used as a mask to filter out the peak image from the dilation
image. Finally, contours of the images are found, and their
centers are defined as the detected peak locations. The right
image of Fig. 2 shows the proposed peak detector output.
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2.3. Elevation Estimation

From the position of the maxima in the DOA-time domain,
the reflection TOAs ne,l and azimuth DOAs θe,l are obtained.
However, to localize reflections in the 3D space, elevations
φe,l are also needed. By fixing θ to the estimated values θe,l,
the SDA weights w(ω, θ = θe,l, φ) are calculated consider-
ing elevation angles between 0◦ and 90◦ with a resolution
of 10◦. The corresponding beamformed signals rB

l (n, θ =
θe,l, φ) are then obtained by following Eq. (1). By using
a Hamming window of length D = 2.7 ms (value heuris-
tically found), centered at ne,l, the beamformed reflections
are segmented. The elevations φe,l are selected as the ones
producing the reflection segments having the greatest energy:
φe,l = argmaxφ

∑ne,l+D
n=ne,l−D |r

B
l (n, θ = θe,l, φ)|2.

2.4. The SARSE Algorithm

The novel algorithm, to discriminate between large and small
reflectors is named as scattering analysis based reflector size
estimator (SARSE). Different from the well-known scattering
coefficient [18], we define here the partial reflection scatter-
ing coefficient K. This measures the partial amount of sound
that is scattered away from the specular reflection direction,
by observing it from a single listening position. SARSE’s
assumptions are: reflectors are not perfectly smooth; small
objects are not closely spaced.

Reflections are segmented out from the beamformed sig-
nals, through a Hamming window of length D centered at
ne,l. The specular component energy is calculated by us-
ing the beamformed reflection segment associated to θe,l and
φe,l: E

sp
e,l =

∑ne,l+D
n=ne,l−D r

B
e,l(n, θ = θe,l, φ = φe,l). The

energy of the partial scattered reflections is obtained by using
the beamformed reflection segments ±α around the specu-
lar component: Esc

e,l =
∑ne,l+D
n=ne,l−D r

B
e,l(n, θe,l − α ≤ θ ≤

θe,l + α, φe,l − α ≤ φ ≤ φe,l + α), with θ 6= θe,l and
φ 6= φe,l. α has to be narrow enough to avoid the inclu-
sion of other reflection energies. Since the SDA beam size,
at 2 kHz, is 5◦, we suggest α = 20◦, i.e. four times it. Par-
tial scattered energies, for a large and a small reflector, are
shown Fig. 4. The partial reflection scattering coefficient
is Ke,l = 1 − (Esp

e,l/E
sc
e,l). By setting a threshold Kth, a

binary classification is performed, with output Ce,l: if a re-
flector is large, then Ke,l > Kth (Ce,l = 1), since scattered
components are received at the listener from around the spec-
ular reflection direction; if a reflector is small, this does not
happen, since no surface exists around the specular reflective
area, thus Ke,l < Kth (Ce,l = 0).

2.5. Reflector Characterization

By combining the localization and classification outputs, re-
flectors can be finally characterized. From the estimated ne,l,
the distance between the reflection image sources and the mi-

crophone array are obtained as ρe,l = ne,lc0. By also hav-
ing θe,l and φe,l, the image sources are localized in spheri-
cal coordinates, as it was done in our image source direction
and ranging (ISDAR) [16]. The loudspeaker image bisection
(LIB) [27] is then used to calculate Me,l, that is the midpoint
between the image source position, in Cartesian coordinates,
Be,l and the loudspeaker B0,l: Me,l = (Be,l + B0,l)/2.

Midpoints that are related to reflections classified as large
Me,l,Ce,l=1 are converted to planes by employing our ISDAR-
LIB method (for a detailed description, please, refer to [16]).
Looking towards the six spatial directions, the closest planes
to the microphone array are selected to generate the room
shoebox model. If L loudspeakers are used, the shoebox es-
timation is refined, by applying our mean-ISDAR-LIB [16],
which averages each room boundary over its L estimations.
Finally, the remaining midpoints Me,l,Ce,l=0, that are related
to small reflectors, are modeled as cuboids of dimensions ten
times smaller than the shoebox in which they are in. This size
was chosen to approximate a typical furniture dimension.

3. EXPERIMENTS AND RESULTS

SARSE and its application to the new localization method are
evaluated. Experiments aim to demonstrate the reflector clas-
sification importance, for dynamic listener applications.

3.1. The Datasets

RIRs were recorded in four rooms. A bi-circular array of mi-
crophones was employed. Each circle, of radii 85 cm and
106 cm, respectively, is composed of 24 microphones, for a
total of 48. Prior knowledge about the reflector positions was
used to solve the up-down ambiguity generated by planar ar-
rays [16]. The room dimensions, reverberation times (RT60s)
averaged between 500 Hz and 4 kHz, and loudspeaker posi-
tions (with respect to the microphone array) are reported on
the left side of Tab. 1. All the recorded RIRs, together with
relative detailed documentation, can be downloaded from [28,
29]. The first room, named as “BBC LR”, is a listening en-
vironment at the BBC MediaCity, in Salford, UK, where the
interior objects were limited to the recording devices [29].
The second room is named as “BBC UL”. It is a lab at the
BBC MediaCity, furnished to reproduce a living room-like
environment [29]. “Vislab” was an acoustically treated lab at
the University of Surrey, where the Surrey Sound Sphere was
built (i.e. the main interior object) [28]. The last dataset is
“VML”. It was a mock room built in a lab at the University of
Surrey, with one wall and ceiling missing, like a film set [28].
The interior objects were the recording devices.

3.2. Evaluation Metrics

The first part of the experiments evaluates SARSE’s classifi-
cation performance. Four metrics are used [30]: the precision,
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Table 1. Dataset characteristics (left), classification results (center) and reflector localization results (right).
Room Size (m3) RT60 Loudsp. Pos. Precis. Recall Accur. F1 Score εSARSE ε

BBC LR 5.6× 5.0× 2.9 222 ms 0◦, 180◦ 100 % 100 % 100 % 1.00 118 cm 141 cm
BBC UL 5.6× 5.2× 2.9 275 ms 0◦, -110◦ 83 % 100 % 89 % 0.91 150 cm 197 cm

Vislab 7.8× 6.1× 4.0 326 ms 0◦, 180◦ 100 % 100 % 100 % 1.00 178 cm 388 cm
VML 2.4× 4.0× 2.4 445 ms 90◦, -90◦ 83 % 83 % 71 % 0.83 148 cm 128 cm
AVG – – – 92 % 96 % 90 % 0.93 149 cm 214 cm
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Fig. 4. 8 kHz octave band energy, around the specular reflec-
tion (at 0◦), for a large (i.e. the ceiling) and a small (i.e. a
sofa) reflector in BBC UL. The vertical line shows α = 20◦.

that is calculated as TP
TP+FP , where TP stands for true positive

and FP for false positive; the recall that is TP
TP+FN , where FN

means false negative; the accuracy TP+TN
TP+TN+FP+FN , with TN

being true negative; the F1 Score, that is 2 Precision·Recall
Precision+Recall .

For the acoustic reflector localization evaluation, the Eu-
clidean distances between the image source positions (related
to the estimated reflectors), and their groundtruth are calcu-
lated to obtain the errors εe. The first evaluated error is the
average over the E room boundaries, that were found without
using SARSE: ε = 1

E

∑E
e=1 εe. The same kind of error is

calculated by introducing SARSE, and named as εSARSE.

3.3. Classification and Localization Performance

Results at the center of Table 1 shows SARSE’s high perfor-
mance, with an average, over the four datasets, that is always
above 90 %. It works perfectly in both BBC LR and Vislab.
SARSE classifies as small objects the recording devices in
BBC LR, and the Surrey Sound Sphere bars, in Vislab. This
suggests robustness of SARSE also with non-flat objects. In
BBC UL, although having a recall of 100 %, the other metrics
show some errors. These are caused by a coffee table, placed
between one loudspeaker and the microphone array, which
occludes the floor. Therefore, SARSE recognizes this table
as being large. VML shows decent performance for most of
the metrics. However, the accuracy is about 70 %. This is
caused by the floor, i.e. the furthest planar reflector. There,
SARSE mistakenly classifies first order reflections as belong-
ing to small objects, whereas higher order ones as planes.

The advantage of using SARSE is underlined by non-
static listener scenarios, for applications such as AR, or next
generation spatial audio production. By classifying a reflec-
tor, the image source position can be correctly dynamically

Fig. 5. BBC UL 360 image with large (square) and small (cir-
cle) reflectors correctly (green) and wrongly (red) classified.

readjusted with the listener movements. In fact, small reflec-
tors are modeled as small cuboids instead of planes. To eval-
uate this performance gain, the errors made by localizing the
reflector, with (i.e. εSARSE) and without (i.e. ε) SARSE, are
compared on the right side of Table 1. At first glance, these er-
rors may look greater than the ones in the literature [16, 31].
However, there, just the first arriving reflections were ana-
lyzed. Here, the error is averaged over all the estimated reflec-
tors composing the room shoebox. Furthermore, here, gross
and fine errors are not discriminated. In BBC LR, BBC UL
and Vislab, the improvement is remarkable. Without SARSE,
in BBC UL, three planes would be generated at the position of
two sofas and a computer screen (see Fig. 5). In Vislab, sev-
eral planes would surround the listener at the position of the
Surrey Sound Sphere. However, SARSE classifies a second-
order reflection as the VML’s floor. The related plane lies far
from the groundtruth, increasing εSARSE. In preliminary tests
on a large room (RT60 = 910 ms), SARSEs classification per-
formance was similar to that in the VML (precision = 50 %,
recall = 100 %, accuracy = 71 %, F1 score = 0.67). However,
the error in reflector localization, ε, was large. Further work
is needed to investigate reflector localization in large rever-
berant rooms for application to concert halls.

4. CONCLUSION

A novel pipeline, that localizes and classifies acoustic reflec-
tors, has been proposed. Experiments were performed by em-
ploying four different rooms, showing the high performance
of the novel classification algorithm SARSE and the impor-
tance of its integration within the novel reflector localization
method. Future work may focus on extending the analysis to
a greater room number. Moreover, alternative reflector clas-
sification methods may be studied. Investigations about com-
binations with vision based methods may also be carried out.
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