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ABSTRACT

We propose a method to estimate a reverberant sound field
by compressed sensing approach without using the hyper
parameter for controlling sparsity. This method first applies
sparse iterative covariance-based approach (SPICE) to the
power spectral density matrix of the microphone signals and
obtains the estimate of sensor noise power without using a
hyper parameter. From this estimate, a convex optimization
problem for a sparse solution is obtained that relates the mi-
crophone signals, plane-wave expansion coefficients, and the
sensor noise power. The plane-wave expansion coefficients
are obtained as the solution of this convex optimization prob-
lem. The sound field can be estimated from the plane-wave
expansion coefficients.

Index Terms— Sparse, group LASSO, SPICE, convex
optimization, constraint

1. INTRODUCTION

Sound pressure at several points in a sound field is measured
by placing microphones at these points. Sound pressure at the
other points can be estimated when the sound field is correctly
estimated from the multichannel microphone signals [1]. The
sound field can be estimated by using relatively few micro-
phones when a compressed sensing (CS) approach is applied
to obtain a sparse solution [2]. For example, the least absolute
shrinkage and selection operator (LASSO) [3] [4] is used to
obtain a sparse solution from a single measurement vector of
the multichannel microphone signals. This approach was ex-
tended to multiple measurement vectors in [5] and [6]. Using
multiple measurement vectors is expected to make the estima-
tion more robust. Group LASSO [7] is often used to handle
the case of the multiple measurement vectors.

However, both LASSO and group LASSO require a hy-
per parameter for controlling the sparsity of their solutions.
The hyper parameter is not known beforehand. Usually, users
of LASSO and group LASSO tune the hyper parameter by
checking the sparsity of the solution several times. Hence in
an ordinary reverberant room with some noise, we have to
tune the hyper parameter beforehand to estimate a sound field
by using the CS approach.

We propose a method to estimate a reverberant sound field
based on CS approach without using the hyper parameter.

This method first applies sparse iterative covariance-based ap-
proach (SPICE) [8] to the power spectral density (PSD) ma-
trix of the microphone signals and obtains the estimate of sen-
sor noise power without using a hyper parameter. From this
estimate, a convex optimization problem for a sparse solu-
tion is obtained that relates the microphone signals, plane-
wave expansion coefficients, and the sensor noise power. The
plane-wave expansion coefficients are obtained as the solu-
tion of this convex optimization problem. The sound field can
be estimated from the plane-wave expansion coefficients. In
Section 2, we review conventional methods to obtain a sparse
solution. In Section 3, we discuss our proposed method. In
Section 4, we discuss the evaluation of the proposed method.

2. LASSO, GROUP LASSO, AND SPICE

We first explain LASSO and group LASSO which conven-
tional CS-based sound-field-estimation methods use. Next,
we explain SPICE on which our proposed method is based.

We formulate the problem of sound field estimation in
the short-time Fourier transform (STFT) domain. Let m be
the frame number. The nth microphone signal Yn(m,ω)
(1 ≤ n ≤ N) in the frequency domain is expressed as

Yn(m,ω) = Gn(ω)S(m,ω) + Vn(m,ω), (1)

where S(m,ω) is an unknown source signal at frequency ω.
Gn(ω) is the time-constant acoustic transfer function from
the unknown source to the nth microphone. Vn(m,ω) is the
noise at the nth microphone. The N microphone signals can
be stacked in a vector format as

y(m,ω) =
[
Y1(m,ω) · · · YN (m,ω)

]T
, (2)

where superscript T denotes the transpose of a vector or ma-
trix.

2.1. LASSO

Let us consider obtaining plane-wave expansion coefficients
from a single measurement vector y(m,ω). This problem can
be formulated with the CS approach [2]. K(� N) possible
plane-wave incident angles are assumed beforehand. This ap-
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proach attempts to obtain a decomposition

y(m,ω) =

K∑
k=1

dk(ω)ak(m,ω), (3)

where dk(ω) (1 ≤ k ≤ K) is the response of the N sensors
of the microphone array to the wave of unit amplitude from
kth direction. ak(m,ω) is the amplitude and phase of the kth
plane wave. This decomposition can be rewritten as

y(m,ω) = D(ω)a(m,ω), (4)

where

D(ω) =
[
d1(ω) · · · dK(ω)

]
, (5)

a(m,ω) =
[
a1(m,ω) · · · aK(m,ω)

]T
. (6)

D(ω) is called a dictionary matrix. d1(ω) · · ·dK(ω) are
called atoms of D(ω) [9][10]. When some elements have
non-zero values and other values are almost zero in the K×1
vector a(m,ω), this sparse a(m,ω) is obtained by solving the
following l1 optimization problem called the least absolute
shrinkage and selection operator (LASSO) [3][4]

a(m,ω) = argmin

‖y(m,ω)−D(ω)a(m,ω) ‖22 + λ ‖a(m,ω)‖1 , (7)

where ‖x‖1 and ‖x‖2 denote the l1 and l2 norm of a vector x.
λ is a regularization parameter that governs the trade-off be-
tween the sparsity of a(m,ω) and the fitting error y(m,ω)−
D(ω)a(m,ω). λ is the hyper parameter.

2.2. Group LASSO

Next consider estimating plane-wave expansion coefficients
from multiple measurement vectors y(m,ω) (1 ≤ m ≤M).
Using multiple measurement vectors is expected to make the
estimation more robust to correlated source signals [5][6].

The relationship between the multiple measurement vec-
tors and the corresponding plane-wave expansion coefficients
is expressed as

Y(ω) = D(ω)A(ω), (8)

where

Y(ω) =
[
y(1, ω) · · · y(M,ω)

]
, (9)

A(ω) =
[
a(1, ω) · · · a(M,ω)

]
. (10)

Matrix A(ω) can be estimated by applying group LASSO [7].
Group LASSO uses the l1,2 norm of A(ω) for inducing spar-
sity. The l1,2 norm is defined as

‖A(ω)‖1,2 =

K∑
k=1

√√√√ M∑
m=1

ak(m,ω)a∗k(m,ω), (11)

where a∗k(m,ω) is the complex conjugate of ak(m,ω). The
group LASSO solves the following optimization problem

A(ω) = argmin ‖Y(ω)−D(ω)A(ω) ‖2F + λ ‖A(ω)‖1,2 ,
(12)

where ‖X‖F denotes the Frobenius norm of a matrix X. The
l1,2 norm acts like LASSO for row vectors of A(ω). De-
pending on λ, some row vectors of A(ω) may become almost
zero row vector. That is, the l1,2 norm selects a few effective
atoms. As a result, Y(ω) is decomposed to the sum of a few
products of dk(ω) and the corresponding row vector in A(ω).

2.3. SPICE

SPICE decomposes the PSD matrix R(ω) of the microphone
signals into the sum of PSD matrices corresponding to sensor
noise and to each atom dk(ω) (1 ≤ k ≤ K) in the dictionary
matrix D(ω). SPICE reconstructs the PSD matrix as

R̂(ω) = D(ω)

 û1(ω) 0
. . .

0 ûK(ω)

DH(ω)

+

 v̂1(ω) 0
. . .

0 v̂N (ω)

 . (13)

ûk(ω) (1 ≤ k ≤ K) is the estimated signal power corre-
sponding to the kth atom dk(ω). v̂n(ω) is the estimated noise
power at microphone n (1 ≤ n ≤ N). The noise in the data is
taken account of in a natural manner by SPICE. SPICE does
not require a hyper parameter such as λ in LASSO and group
LASSO.

3. DECOMPOSITION AND ESTIMATION

We propose a method to estimate a reverberant sound field by
CS approach without using a hyper parameter. The method
first applies SPICE to the PSD matrix of the microphone
signals and estimates sensor noise power. The method next
builds a convex optimization problem that relates microphone
signals, plane-wave expansion coefficients, and sensor noise
power in the frequency domain. Its constraint equation is de-
rived using the estimated sensor noise power. The plane-wave
expansion coefficients are obtained by solving the convex op-
timization problem. The sound field can be estimated from
the plane-wave expansion coefficients. The entire process of
the method is as follows.
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Step 1

Compute a PSD matrix R(ω) from M measurement vectors
y(m,ω) (1 ≤ m ≤M) as

R(ω) =
1

M

M∑
m=1

y(m,ω)yH(m,ω). (14)

Step 2

Decompose R(ω) and reconstruct as R̂(ω) by applying
SPICE as in (13).

Step 3

Estimate vectors am(ω) (1 ≤ m ≤ M) of the plane-wave
expansion coefficients by solving the following convex opti-
mization problems

a(m,ω) = argmin ‖a(m,ω)‖1
subject to ‖y(m,ω)−D(ω)a(m,ω)‖2 ≤

√
δ(ω) (15)

where

δ(ω) = β(ω) (v̂1(ω) + · · ·+ v̂N (ω)) . (16)

β(ω) is the correction term defined as

β(ω) = tr (R(ω)) /tr
(
R̂(ω)

)
, (17)

where tr(X) is the trace of a matrix X. β(ω) makes the sum
of microphone signal powers computed from R̂(ω) equal to
that from R(ω). This convex optimization problem (15) is
the constrained version of (7) [4].

Step 4

Let r be the position of a point in the Cartesian coordinate.
The sound field due to the kth wave at r can be estimated
from bk(m,ω) (1 ≤ k ≤ K, 1 ≤ m ≤M) by

Ŷ (r,m, ω) =

K∑
k=1

exp
(
j
ω

c
nk • r

)
bk(m,ω), (18)

Speaker B Speaker A

Uniform 
circular array 

3 m
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+

0.05 m
3 m

Fig. 1. Arrangement of uniform circular array and sound
sources
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Fig. 2. Direction of arrival of direct and reflected waves
and their amplitude: (a) computed from impulse responses
generated by image method (true), (b) estimated by group
LASSO, (c) estimated by SPICE, and (d) estimated by pro-
posed method.

where j =
√
−1 . c is the velocity of sound. nk is the unit

vector of the direction of the kth plane wave corresponding to
dk(ω).

4. EVALUATION

We evaluated the proposed method in a simulated environ-
ment. A uniform circular microphone array with a 0.05 m ra-
dius and 12 elements was used in a simulated room of 6×5×3
m. The sound sources were positioned 3 m from the circular
microphone array as shown in Fig. 1.

All acoustic impulse responses (AIRs) between the sound
sources and the microphone array were generated by a mod-
ified version [11] [12] of Allen and Berkley’s image method
[13]. Reflection coefficients of the ceiling and the floor were
set to 0. Its reverberation time T60 was 320 ms. The sam-
pling frequency was 8 kHz. Microphone signals were gen-
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Fig. 3. Relative errors of estimated sound field for group LASSO with various λ and for proposed method (©): (a) 30 dB SNR,
r =0.05 m, (b) 30 dB SNR, r =0.1 m, (c) 10 dB SNR, r =0.05 m, and (d) 10 dB SNR, r = 0.1 m.

erated by convolving the AIRs with pink noise. The frame
length of STFT was 512 samples (corresponding to 64 ms).
A square-root Hanning window was used. The overlap of
STFT was 50%. We assumed 48 possible directions before-
hand (K = 48 in (5) and (13)). We used 20 frames (M = 20).
We used SPICE of identical v̂n(k) [8, III (B)] with iteration
number 30. The CVX [14][15] was used for solving the con-
vex optimization problem (15).

First, we evaluated the estimations of the directions of di-
rect and reflected waves when there was only speaker A. The
signal-to-noise ratio (SNR) was 30 dB. Fig. 2 shows the re-
sults at 2.5 kHz with λ = 0.3 that was not optimal. Fig.
2 (a) shows the true directions of arrival of direct and re-
flected waves computed from AIRs generated by the image
method. Fig. 2 (b), (c), and (d) show those estimated by
group LASSO, SPICE, and the proposed method. The result
by group LASSO with non-optimal λ (b) has more spikes than
(a). The proposed method (d) has smaller spikes than group
LASSO (b).

Second, we evaluated the reconstructed sound field by us-
ing twelve points on r =0.05 m and r =0.1 m from the center

of the microphone array at the SNRs of 30 dB and 10 dB. The
sound field was generated by speaker A and B in Fig. 1. Fig.
3 shows the relative errors for group LASSO with various λ
and the proposed method. Fig. 3 (a) and (b) show the rela-
tive errors on r =0.05 m and r =0.1 m respectively at 30 dB
SNR. Fig. 3 (c) and (d) show those at 10 dB SNR. The rela-
tive errors of group LASSO depend on λ. λ = 0.003 is best
at 30 dB SNR and λ = 0.3 is best at 10 dB SNR. The tuning
of the hyper parameter λ is necessary for the group LASSO.
Though the relative errors of the proposed method is larger
than the lowest relative errors of the group LASSO, the dif-
ferences are within 6 dB. The proposed method adjusted its
estimation for both 30 dB and 10 dB SNR without tuning.

5. CONCLUSION

We have developed a method to estimate a reverberant sound
field by compressed sensing approach without using a hyper
parameter for controlling sparsity. The proposed method was
shown to adjust its sound field estimation for both at 30 dB
SNR and 10 dB SNR without tuning.
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