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ABSTRACT

In this paper we propose a parametric sound field reconstruc-
tion approach. In particular, the technique is based on the es-
timation of three parameters for each acoustic source (source
position, radiation pattern and source signal) given the sig-
nals acquired by few arbitrarily placed microphone arrays.
This allows us to synthesize the signal of a virtual microphone
placed in any point of the acoustic scene.

Index Terms— distributed microphone networks, source
localization, virtual microphone

1. INTRODUCTION

An emerging application in space-time processing is that of
Virtual Miking (VM) . The VM is a procedure which concerns
the synthesis of a virtual microphone signal starting from the
information given by other acoustic sensors. The virtual mi-
crophone can be arbitrarily placed in the space, thus changing
the listening point. This is possible only if the acoustic field is
known or can be reconstructed at the desired location. There-
fore, the problem concerns the reconstruction of the sound
field at every point in space.

In the literature different approaches to the sound field
reconstruction can be found [1, 2, 3, 4]. Here, we propose
a parametric approach to the problem, in which the acous-
tic information is acquired by means of a network of circu-
lar compact microphone arrays that can be arbitrarily placed
around the sources. This enables the adoption of a geometry-
based acoustic representation of the sound field defined as a
parametrization of the plenacoustic function [5] in terms of
acoustic rays [6]. The mapping of the acoustic information in
the ray space domain is here performed by a novel tool called
Distributed Ray Space Transform (DRST), which generalizes
the Ray Space Transform to arbitrary array geometries [7].

The parametric approach adopted here is similar to the
one presented in [4], but in our case the parameters to be es-
timated are directly related to the source: the source position,
the source radiance pattern and the source signal. The DRST
enables the estimation of these parameters individually and
the inference of the direct sound field in each point in the
space. In this work we limit ourselves to a free field scenario,
but the DRST can be generalized to reverberant environments.

Fig. 1: Graphical representation of the model in (1)

The paper is structured as follows: in Sec. 2 the paramet-
ric sound field model is introduced and the problem is for-
mulated. Sec. 3 presents the estimation of the model param-
eters. In Sec. 4 the synthesis of the VM signal is described.
Sec. 5 reports the results obtained during simulations and ex-
periments. Finally, Sec. 6 draws conclusions.

2. SIGNAL MODEL

Consider a distributed microphone network composed by A
compact arrays, each composed by M microphones. Let a =
0, . . . , A− 1 be the array index and m = 0, 1, . . . ,M − 1 the
microphone index within a given array. Let us start modeling
the signal acquired by the generic mth microphone within the
ath array. Where not needed, for reasons of compactness in
the notation, we omit the array index a. Assuming sources
and microphone to lie on a horizontal plane, this model is
defined starting from the far field solution of the Rayleigh’s
first integral [8], i.e [9]

P (r(a)m , ω) =

N−1∑
n=0

Dn(θ
(a)
m,n, ω)g(r

(a)
m , r′n, ω)Sn(ω) + e(a)m (ω),

(1)
where ω is the temporal frequency, r(a)m is the position vector
of the mth microphone in the ath array, r′n is the position
vector of the nth source, N is the number of sources, Sn(ω)

is the signal emitted by the nth source and e(a)m (ω) is a noise
term representing the microphone self-noise. The function
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Fig. 2: Projective ray space representation of a point source

g(r
(a)
m , r′n, ω) is the Green’s function defined as

g(r(a)m , r′n, ω) =
e−jk‖r

(a)
m −r′n‖

4π‖r(a)m − r′n‖
, (2)

where k = ω/c with c the speed of sound and ‖ · ‖ is the
`2 norm. The term Dn(θ

(a)
m,n, ω) : R2 → (0, 1) in (1) is

known as radiation pattern of the nth source and describes
the intensity of the sound field emitted toward the direction
θ
(a)
m,n = ∠(r(a)m − r′n) (see Fig. 1). It is worth noting that de-

spite we are considering a 3D propagation model, we consider
the plane where both sources and microphones lie. We now
model the signals of the microphones within the ath array. In
vectorial form

p(a) = (D(a) ⊗G(a))s+ e(a), ∀a = 0, . . . , A− 1, (3)

where ⊗ is the Hadamard product, p(a) = [P (r
(a)
0 ), . . . ,

P (r
(a)
M−1)]

T , e(a) =
[
e
(a)
0 , . . . , e

(a)
M−1

]T
, s = [S0, . . . ,

SN−1]T ,
[
D(a)

]
m,n

= Dn(θ
(a)
m,n) and

[
G(a)

]
m,n

= g(r
(a)
m , r′n).

The variable ω has been omitted for convenience. In order
to reconstruct the signal at a different microphone location,
we need the three source parameters that uniquely define (1):
location, radiance pattern, and signal.

3. SOUNDFIELD ANALYSIS

3.1. Source localization

Since both the transfer function model (2) and the positions of
the microphones are assumed to be known, we need to local-
ize the sources in the acoustic scene. Recently, the Ray Space
Transform (RST) [7] has emerged as a convenient tool to de-
scribe acoustic information in the ray space domain. Each
point in this domain corresponds to an acoustic ray in the ge-
ometric space and the main acoustic primitives (sources, ar-
rays and reflectors) are mapped onto lines, whose parameters
depend uniquely on their geometric location. Hence, the lo-
calization of the sources can be easily performed through pat-

tern analysis techniques. The RST is based on multiple beam-
forming operations performed on sub-arrays obtained through
windowing on an extended linear array.

The Distributed Ray Space Transform introduced in this
paper inherits the core idea of the RST but, since we deal with
a network of distributed compact arrays, the beamforming op-
eration is performed individually to each array. Moreover, for
reasons of generality, here we map the information in the pro-
jective ray space [10] in which rays are represented by their
projective coordinates l = [l1, l2, l3]

T that correspond to the
parameters of the implicit equation of the line on which the
ray lies, i.e. l1x + l2y + l3 = 0. In this domain acoustic
primitives are mapped onto planes, whose parameters depend
uniquely on the geometric location of the acoustic primitives
(see Fig. 2). Therefore, for each microphone array a we per-
form a beamforming operation [11] that results in a pseu-
dospectrum defined as a function of angle α ∈ [0, 2π] and
that is mapped in the projective ray space as

l
(a)
1 = γ sin(α(a));

l
(a)
2 = γ cos(α(a));

l
(a)
3 = γ[ya cos(α(a))− xa sin(α(a))], γ > 0.

(4)

where x(a), y(a) are the array reference point coordinates. In
order to localize the sources, similarly to what is done in
[10], we search for the N × A highest peaks and we use
RANSAC [12] to perform a robust linear regression to iden-
tify the planes relative to the sources. The parameters of the
identified planes correspond to an estimate of the source po-
sitions r̂′n ∀n = 0, . . . N − 1.

3.2. Radiance pattern estimation

As far as the estimation of the radiance pattern is con-
cerned, we assume the sources to be located at a distance
much greater than the size of the arrays. Therefore, all the
microphones within each array will “see” the nth source
under the same angle θ

(a)
n . As a consequence, the ele-

ments of the matrix D(a) are independent on the micro-
phone indices, i.e

[
D(a)

]
m,n

= Dn(θ
(a)
n ), where θ(a)n =

∠(r(a) − r′n) with r(a) a reference point for the ath ar-
ray (e.g center of gravity). If we define the matrix P(a) =

diag(D0(θ
(a)
0 ), . . . , DN−1(θ

(a)
N−1)), the model in (3) reduces

to

p(a) = G(a)(P(a)s) + e(a), ∀a = 0, . . . , A− 1. (5)

Since after the localization of the sources we have an esti-
mate Ĝ(a) of the matrix G(a), we can infer each element of
the vector b(a) = P(a)s using an LCMV beamformer [13]
whose coefficients are the result of the following optimiza-
tion process

h(a)
n = argmin

h
hHh s.t. hHĜ(a) = c, (6)
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where c ∈ C1×N with [c]i = 1 if i = n and zero otherwise.
The solution to (6) is given by [14]

h(a)
n = Ĝ(a)

(
Ĝ(a)H Ĝ(a)

)−1
cH . (7)

The estimate b̂(a) of the vector b(a) is obtained as

b̂(a) = H(a)Hp(a) ∀a = 0, . . . , A− 1, (8)

where H(a) =
[
h
(a)
0 , . . . ,h

(a)
N−1

]
. If we define the vector qn

as

qn =
[
|
[
b̂(0)

]
n
|, . . . , |

[
b̂(A−1)

]
n
|
]T

= |Ŝn|
[
D̂n(θ

(0)
n ), . . . , D̂n(θ

(A−1)
n )

]T
,

(9)

we have an estimate of the directivity of the nth source for
the angle θ(a)n ∀a = 0, . . . , A − 1 scaled by |Ŝn|. In order
to reconstruct the sound field we need the directivity for θ ∈
[0, 2π]. Hence, we adopt a model to reconstruct the whole
radiance pattern from the estimates at a limited set of angles.
In particular, we assume that

Dn(θ
(a)
n ) =

L−1∑
l=0

wn,l cos(lθ
(a)
n ) + rn,l sin(lθ

(a)
n ). (10)

If we define the matrix An = [An,1,An,2], with [An,1]a,l =

cos(lθ
(a)
n ), [An,2]a,l = sin(lθ

(a)
n ) and yn = [wn,0, . . . ,

wn,L−1, rn,0, . . . , rn,L−1]T , we can find an estimate of the
expansion coefficients as the result of the optimization prob-
lem [15]

ŷn = argmin
yn

‖qn −Anyn‖2 s.t. Fyn ≥ 0, (11)

where F = [F1,F2] ∈ RI×2L, [ F1]i,l = cos(lφi), [ F2]i,l =
sin(lφi) with φi ∈ [0, 2π] i = 0, . . . , I − 1.

3.3. Signal reconstruction

In order to reconstruct the signals Sn(ω), we can exploit the
estimate of the radiance patterns obtained in Sec. 3.2. In par-
ticular, we design an informed spatial filter for each source n
as

u?
n = argmin

u
uHu s.t. uHY = d, (12)

where Y =

[(
Ĝ(0) ⊗ D̂(0)

)T
, . . . ,

(
Ĝ(A−1) ⊗ D̂(A−1)

)T ]T
∈

CAM×N and d ∈ C1×N with [d]i = 1 if i = n and zero oth-
erwise. The matrices D̂(a) contain the directivity values
obtained using the expansion coefficients (ref. (11)) in (10).
Finally, the estimate Ŝn(ω) of Sn(ω) is obtained as

Ŝn(ω) = (u?
n)

H
p, (13)
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Fig. 3: The sound synthesis procedure block diagram. Each block refers to
its corresponding section.

where p =
[(
p(0)

)T
, . . . ,

(
p(A−1))T ]T . It is worth noting

that since the vector qn in (9) contains a scaling factor |Ŝn|,
the matrix D̂(a) represents a scaled version of the radiance
pattern. Hence, also the result of (13) is a scaled version of
the signal. However, this is not a problem in our framework,
as described in the next section.

4. SOUND SYNTHESIS

Once the parameters are estimated as described in the previ-
ous sections, the sound field at the virtual microphone loca-
tion can be computed through the parametric model in (1) as

P̂ (rV M , ω) =

N−1∑
n=0

D̂n(θV M,n, ω)g(rV M , r̂′n, ω)Ŝn(ω) (14)

where rVM is the VM position, θVM,n∠(rVM − r̂′n)
and r̂′n is the estimated source position. Moreover, since
g(rVM , r̂′n, ω) is proportional to 1/‖rVM − r̂′n‖, in practice
it is necessary to limit its value to gmax to avoid amplifying
the signal too much when the VM is very close to the nth
source. The block diagram of Fig. 3 summarizes the whole
VM procedure.

5. SIMULATIONS AND EXPERIMENTS RESULTS

In order to validate the proposed procedure, we test our
methodology in two contexts: software simulations and real
applicative scenarios. For both simulations and experiments
different source signals are adopted. In particular, the white
Gaussian noise is useful to observe the behavior of the tech-
nique at different frequencies, while speech signals are used
to simulate a real use case. In order to be consistent with the
adopted model, a Short Time Fourier Transform (STFT) of
the microphone signals is performed in both simulations and
experiments using a 20ms Hann window with 50% overlap.

Since the technique is divided into different steps, we
devise proper metrics in order to evaluate them separately.
Specifically, the metrics are
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Localization Error:

LE(r′) =
1

N

∑N−1

n=0
‖r̂′n − r′n‖ (15)

Directivity Error:

DEn =
1

F

∑F−1

f=0

1

I

∑I−1

i=0
(D̂n(θi, ωf )−Dn(θi, ωf ))

2

(16)
where f is the frequency index and i is the angle index.

Synthesized Signal Error:

SSEVM =

√
1

T

∑T

t=0
(xVM (t)− xref (t))2 (17)

where t is the discrete time index, xVM the VM signal in time
domain and xref stands for the reference signal.

The simulation setup is shown in Fig. 4a. As we can
see, six circular microphone arrays (radius= 0.1m) composed
by four microphones are employed. The source signals are
weighted by a cardioid radiance pattern and propagated to the
sensors. I.i.d. white noise for a SNR = 40dB w.r.t the first
microphone in the first array has been added to the micro-
phone signals. The most significant simulation results are re-
ported in Tab. 1a. As far as the localization performances are
concerned, we can see that the error is in the order of 10−2m.
Moreover, since the synthesized signal directly depends on
the estimation of the parameters, we can see that the values
of the SSE vary accordingly with the other two metrics. In
addition, we can notice that when two sources are active si-
multaneously the performance slightly decrease.

For what concerns the experiments, we tested the pro-
posed technique in a semi-anechoic chamber characterized
by a reverberation time T60 = 0.05 s. The deployment of the
equipment is shown in Fig. 4b and it is consistent with the one
adopted for the simulations. In this case, in order to obtain a
reference signal, useful to evaluate our system, two physical
microphones are placed as shown in Fig. 4b. To simulate the
source signal, two custom loudspeakers are adopted. Since
we do not have a reference radiance pattern for these loud-
speakers, the DE metric is not evaluated. The most significant
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Fig. 4: Test setup. Sources (red) are surrounded by microphone arrays
(blue), while the virtual microphones that coincide with the reference ones
are highlighted in green.

Simulations
Sources Orientation Source Signal LE [m] DE SSE

1 0◦ White Noise 1.12× 10−2 6.61× 10−3 6.74× 10−4

2 0◦ 7.40× 10−3 2.66× 10−2 5.41× 10−4

1, 2 0◦, 0◦ 3.50× 10−2 8.56× 10−2, 5.24× 10−2 2.42× 10−2

1 −90◦ Speech 1.10× 10−2 3.57× 10−3 8.18× 10−4

2 90◦ 8.00× 10−3 1.12× 10−2 7.72× 10−4

1, 2 −90◦, 0◦ 4.39× 10−2 8.97× 10−2, 9.94× 10−2 5.75× 10−3

(a)
Experiments

Sources Orientation Source Signal LE [m] SSE
1 90◦ White Noise 3.54× 10−2 1.00× 10−2, 2.84× 10−3

2 −90◦ 5.33× 10−2 3.44× 10−3, 9.30× 10−3

1, 2 90◦,−90◦ 6.40× 10−2 1.32× 10−2, 1.29× 10−2

1 90◦ Speech 6.03× 10−2 5.83× 10−3, 4.26× 10−3

2 90◦ 3.18× 10−2 9.72× 10−3, 6.98× 10−3

1, 2 90◦, 90◦ 5.53× 10−2 1.34× 10−2, 1.00× 10−2

(b)
Table 1: Tests are referred to the setup in Fig. 4a and Fig. 4b, respectively.
We define the orientation of source as the angle of the maximum value of the
radiation pattern measured counter-clockwise from the positive x axis.

results from experiments are reported in Tab. 1b. Looking at
the LE, we can see that the localization is less accurate, but
remains in the order of 10−2m. The considerations made for
the simulations hold also for the experiments. Finally, we re-
port in Fig. 5 an example referred to the fourth row in Tab. 1b
of a spectrogram of the VM signal w.r.t to the two reference
microphones.
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Fig. 5: VM spectrograms compared to their references from experiment 4.

6. CONCLUSIONS

In this paper we presented a parametric sound field recon-
struction technique used for the estimation of the signal of
a virtual microphone arbitrarily placed in the acoustic scene.
An analysis framework has been developed in order to esti-
mate the model parameters starting from the signals acquired
from a network of compact microphone arrays. The signal
model has been developed in a free-field scenario, and can be
extended in its current formulation to moderately reflective
environments. The procedure has been tested through simu-
lations and experiments to show the effectiveness of the pro-
posed approach. It is in our plans, however, to extend the pro-
posed method also to the case of reverberant environments,
possibly with the help of a priori information related to the
geometry of the environment [16] [17].
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