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ABSTRACT
For conventional sampling of sound-fields, the measurement in
space by use of stationary microphones is impractical for high au-
dio frequencies. Satisfying the Nyquist-Shannon sampling theorem
requires a huge number of sampling points and entails other difficul-
ties, such as the need for exact calibration and spatial positioning of
a large number of microphones. Dynamic sound-field measurements
involving tracked microphones may weaken this spatial sampling
problem. However, for aliasing-free reconstruction, there is still the
need of sampling a huge number of unknown sound-field variables.
Thus in real-world applications, the trajectories may be expected
to lead to underdetermined sampling problems. In this paper, we
present a compressed sensing framework that allows for stable and
robust sub-Nyquist sampling of sound fields by use of moving
microphones.

Index Terms— Room impulse responses, dynamic sound-field
measurement, microphone array, compressed sensing

1. INTRODUCTION

The knowledge of room impulse responses (RIRs) that describe
sound fields enables us to improve acoustic rendering by means
of listening room compensation [1, 2, 3]. Common stationary ap-
proaches for measuring RIRs are the use of perfect sequences [4, 5],
maximum-length sequences [6, 7], and exponential sine sweeps [8].

In [9], the spatio-temporal sampling of RIRs has been investi-
gated. The spatial sampling of RIRs by use of equidistantly spaced
microphones requires an extremely high effort. In addition to the
calibration effort involving the compensation of spatio-temporal de-
viations and the equalization of the frequency responses of the indi-
vidual microphones, an array of microphones will most likely never
be dense enough to satisfy the Nyquist-Shannon sampling theorem
without significant problems for very high audio frequencies. In
order to make spatial sampling practical, methods for the dynamic
measurement of RIRs have been proposed. In [10], a technique is
presented that allows for the reconstruction of RIRs along the tra-
jectory of a moving microphone by exploiting the Doppler effect.
A specially designed input signal is needed for this and the speed
of the microphone must be constant. An entirely different dynamic
approach has been proposed very recently in [11, 12], where mea-
surements taken along tracked microphone trajectories are related to
a modeled sampling grid in space via interpolation. Based on the tra-
jectory, excitation, and measured signal, a linear system of equations
is set up, whose solution yields the RIRs on the modeled grid.

For the case that only a small number of K unknown param-
eters is nonzero, the theory of compressed sensing (CS) allows for
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uniquely solving underdetermined systems of linear equations with
sparsity constraint [13, 14]. In the context of signal processing, this
translates to sub-Nyquist sampling of a signal vector h ∈ CU by
merging the steps of sampling and compression. Under the assump-
tion that h lives in a sub-space of dimension K � M < U with
respect to some unitary basis Ψ ∈ CU×U , the recovery of the sig-
nal by use of M incoherent [15] samples is possible by solving the
regularized problem

argmin
c∈CU

‖x−AΨHc‖2`2 s.t. ‖c‖0 ≤ K, (1)

where x ∈ CM is the measurement signal, A ∈ CM×U is the lin-
ear sampling operator, c = Ψh is the sparse coefficient vector, and
‖c‖0 is a pseudo norm counting the number of nonzero elements
in c. The problem (1) is NP-hard [16] and is typically solved us-
ing either a relaxation into an `1-minimization problem allowing for
convex optimization, such as basis pursuit [17, 18], LASSO [19], or
Dantzig selector [20], or a greedy algorithm such as the orthogonal
matching pursuit (OMP) [21], compressed sensing matching pursuit
(CoSaMP) [22], or iterative hard thresholding (IHT) [23, 24]. In
order to guarantee stable and robust recovery of any approximately
K-sparse signal, any arbitrary set of K columns of the CS matrix
A = AΨH must build up a nearly orthogonal system, which is
formalized by the so-called restricted isometry property (RIP) [25].
Verifying the RIP of a matrix is a combinatorial NP-hard problem.
For practical applications, a more tractable property to evaluate the
sampling process is the coherence [15]

µ(A) = max
1≤u6=v≤U

|〈acu,acv〉|
‖acu‖`2‖acv‖`2

, (2)

where acu denotes the u-th column of A. The theoretical guarantees
for unique CS based recovery improve for a smaller coherence [26].

There are existing methods that exploit the principle of CS for
sound-field recovery with only a few stationary, randomly placed
microphones. In [27], a sparse plane wave approximation is applied
to reconstruct the sound field at low frequencies up to 400 Hz. In
[28], the sparsity of RIRs in time domain is exploited to interpolate
the early-reflection part within a volume of interest.

In this paper, we provide a compressed sensing framework for
sound-field measurements using moving microphones. In [11, 12],
the sampling matrix was required to have full column rank and to
formulate a well-posed problem in order to obtain the sound-field
estimate by simply calculating the unique least-squares solution of
the modeled linear system. However, for practical applications,
especially when considering hand-held microphones, we gener-
ally expect trajectories that lead to ill-posed and even underdeter-
mined problems. By exploiting that the spatio-temporal spectrum
of sound-fields is ideally restricted to a hypercone along the tem-
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poral frequency axis [9], we combine the dynamic sampling model
from [11, 12] with a CS framework allowing for stable and robust
sound-field recovery despite underdetermined variables.

2. DYNAMIC SOUND-FIELD SAMPLING

Sound fields describe the sound pressure with respect to both time t
and receiver position r = [rx, ry, rz]

T . Assuming an acoustical en-
vironment that is linear and time-invariant, the sound pressure field
is p(r, t) =

∫∞
−∞ h(r, τ)s(t − τ)dτ , where s(t) is the signal emit-

ted by a fixed source and h(r, t) is the spatially varying RIR from
the source location to the point r. Characteristics and sampling of
p(r, t) are explicitly described in [9]. For the case in which a Dirac
pulse is emitted at t = 0, the sound field is simplified to the spatio-
temporal RIR p(r, t) = h(r, t).

2.1. Uniform Sampling Grids

Measuring the sound field h(r, t) is basically a sampling prob-
lem. Assuming a bandlimited signal, it can be reconstructed
through equidistant sampling in both time and space dimensions.
Let T = 1

fs
denote the sampling interval in time with sampling

frequency fs fulfilling the Nyquist-Shannon sampling theorem
fs > 2fc, where fc is the temporal cutoff frequency. Accordingly,
we have samples at equidistant time points tn = nT with n ∈ Z
being the discrete variable of the time signal. For uniform sampling
in the spatial dimensions, we consider a Cartesian grid where the
equidistant sampling points rg ∈ G are given by the set

G =
{
rg | rg = r0 + [gx∆x, gy∆y, gz∆z]

T
}

(3)

with the grid origin r0 and the discrete grid variables in g =
[gx, gy, gz]

T ∈ Z3. In order to reconstruct sound waves in space
with minimal wavelength λ = c0

fc
without aliasing, the spatial grid

requires ∆ξ <
c0
2fc

, where c0 is the speed of sound and ∆ξ denotes
the spatial sampling interval for each dimension ξ ∈ {x, y, z}.

2.2. Dynamic Sampling Model

The following descriptions consider a single microphone sampling
on the trajectory r(n). The extension to multiple microphones is
straightforward [12].

Aiming at the recovery of the finite set of N = XY Z RIRs
at discrete grid positions g ∈ G, with G = {0, . . . , X − 1} ×
{0, . . . , Y −1}×{0, . . . , Z−1} spanning a uniform grid inside the
volume of interest, the dynamic measurement process is modeled as

x(r(n), n) =

L−1∑
m=0

∑
g∈G

ϕn(g)h(g,m) s(n−m) + η(n), (4)

where ϕn(g) is an interpolation function for approximating the
sound field at continuous positions r(n) for discrete time points n as
linear combination of the grid RIRs h(g, n) subject to displacements
rg−r(n) (cf. Sec. 3.3). The term η(n) is a perturbation comprising
the measurement noise and the error of the bandlimited interpolation
in space. Accordingly, for M samples taken by the moving micro-
phone, the linear measurement model is x =

∑N
u=1ΦuShu + η,

where x ∈ RM contains the microphone samples, η ∈ RM
comprises the noise, hu ∈ RL is a sought grid RIR indexed by
u ∈ {1, . . . , N}, Φu = diag {ϕ0(gu), . . . , ϕM−1(gu)} is the cor-
responding diagonal matrix for interpolation, and S ∈ RM×L is the

convolution matrix of the source signal. The modeling of positions
rgu (u ∈ {1, . . . , N}) forming a uniform grid in space, the tracking
of the trajectory r(n), and the knowledge about the excitation signal
s(n) allow for setting up the system of linear equations

x = Ah+ η (5)

with h ∈ RNL encapsulating the grid RIRs and the sampling matrix
A ∈ RM×NL possessing the block structure

A =
[
Φ1S,Φ2S, . . . ,ΦNS

]
. (6)

The m-th row ofA is built up by the sampling vector

φHm = [ϕm−1(0) s(m), . . . , ϕm−1(X − 1) s(m)] (7)

with
s(m) = [s(m− 1), s(m− 2), . . . , s(m− L)] (8)

projecting the unknown parameters onto measurement space:

φHmh = 〈h,φ〉 = x(m− 1). (9)

3. COMPRESSED SENSING FRAMEWORK

Considering the sparsely occupied hypercone forming the sound-
field spectrum [9], let TB ∈ CB×B be a unitary matrix perform-
ing an orthonormal transform of a 1D signal into some frequency
representation. For a multidimensional regular grid, assume the sep-
arability of the transform. Regarding grid RIRs concatenated in h
first along the x dimension and then along the y and z dimensions in
succession, the sampled sound field is described by the coefficients
of the 4D frequency representation encapsulated in c = Ψh, where
Ψ = TZ⊗TY ⊗TX⊗TL is a unitary U×U matrix and c ∈ CU is
a K-sparse vector. The operator ⊗ denotes the Kronecker product.
To keep the description and analysis simple, in Secs. 3.1, 3.2, and
3.3 the measurement space will be confined to the x dimension only.

3.1. Structure of the CS Matrix

Let Ψ = TX ⊗ TL perform some orthonormal 2D transform along
both discrete variables of the sought signal h(gx, n) contained in h.
Correspondingly, c ∈ CXL comprises the concatenated values of
the 2D transformed sound-field spectrum. Following (9), the pro-
jection of the unknown parameters onto measurement space may be
described by

φHmΨHΨh = 〈Ψh,Ψφm〉, (10)

where (Ψφm)H = arm is the m-th row of the resulting CS matrix
A ∈ CM×XL, i.e., the 2D transformed values of the components
in φHm. Following (7) and (8), the components in φHm are given by
the particular sequence of the time reversed and spatially weighted
source signal

sm(gx, n) = ϕm−1(gx) s(m− 1− n). (11)

3.2. Fourier Representations

For Ψ performing the 2D discrete Fourier transform on the sound
field, the m-th row arm building A is composed of the 2D discrete
Fourier transform of (11), given by

Sm(kx, l) =
1√
XL

X−1∑
gx=0

L−1∑
n=0

sm(gx, n) e−2πj l
L
ne−2πj kx

X
gx ,

(12)
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where kx ∈ {−X−1
2
, . . . , X−1

2
} and l ∈ {−L−1

2
, . . . , L−1

2
} are

the sampled frequency variables for the space and time dimension,
respectively. For simplicity and without loss of generality, both the
grid length X and the RIR length L are assumed to be odd.

3.3. Influence of the Trajectory

From the point of view of signal processing, the coefficients given
by the interpolation function act like a digital filter in the spatial do-
main that depends on the microphone position relative to the mod-
eled grid. Regarding (4), we can consider ϕn(gx) to fulfill a spatial
alignment task, i.e., to perform a fractional delay (FD) in space on
the sound field h(gx, n), in order to fit samples x(rx(n), n) taken
in continuous space into the modeled spatial grid. The impulse re-
sponse of an ideal FD filter is a shifted and sampled sinc function,
ϕid
n(gx) = sinc(gx −Dx(n)), where

Dx(n) =
rx(n)− r0

∆x
(13)

is the spatial-grid delay. Thus, the ideal frequency response of a FD
filter reads

Φid
n(ejκx) = e−jDx(n)κx , (14)

with the spatial angular frequency κx. Let the columns of A consist
of values of the Fourier spectra Sm(kx, l) defined in (12): ac(kx,l) =

[S1(kx, l), . . . ,SM (kx, l)]
T . Then, it can be seen that the change

of the microphone position from measuring point rx(n) to point
rx(n + m) ideally corresponds to recursive phase shifts in the dis-
crete Fourier spectrum given by

Sn+m(kx, l) = Sn(kx, l) e
−2πj(Dx(m)−Dx(n)) kx

X e−2πjm l
L .

(15)
Thus, for a spectrally flat excitation sequence and a perfect interpola-
tion kernel, each column in A can be described by use of structured
spatial and temporal phase terms according to

ac(kx,l) =



a0
(kx,l)

a0
(kx,l)

e−2πj(Dx(1)−Dx(0)) kx
X e−2πj1 l

L

a0
(kx,l)

e−2πj(Dx(2)−Dx(0)) kx
X e−2πj2 l

L

...
a0

(kx,l)
e−2πj(Dx(M−1)−Dx(0)) kx

X e−2πj(M−1) l
L


,

(16)
where the initial phase state a0

(kx,l)
= e−2πjDx(0) kx

X σs e
jθ0(l) is

determined by the initial grid delayDx(0) and the initial phase θ0(l)
of the excitation signal with power σ2

s .

3.4. Coherence of Measurements

From the column representation (16), the deduction of the coherence
(2) belonging to the particular CS matrix of the 4D sound-field sam-
pling problem is straightforward. Let the interpolation function be
separable on the spatial grid. By defining the difference between two
discrete frequencies for each dimension,

∆kx = k′x − k′′x , ∆kx ∈ {−(X − 1), . . . , X − 1}, (17)

∆ky = k′y − k′′y , ∆ky ∈ {−(Y − 1), . . . , Y − 1}, (18)

∆kz = k′z − k′′z , ∆kz ∈ {−(Z − 1), . . . , Z − 1}, (19)

∆l = l′ − l′′, ∆l ∈ {−(L− 1), . . . , L− 1}, (20)

the vector d = [∆kx,∆ky,∆kz]
T , the trajectory

rD(n) = [Dx(n), Dy(n), Dz(n)]T (21)

relative to the modeled grid G, and the trajectory-dependent function

X (rD(n),d) = e
−2πj

(
Dx(n)

X
∆kx+

Dy(n)

Y
∆ky+

Dz(n)
Z

∆kz

)
, (22)

the coherence of the modeled sound-field sampling problem reads

µ(A) = max
(d,∆l)

1

M

∣∣∣∣∣
M−1∑
n=0

X (rD(n),d) e−2πj n
L

∆l

∣∣∣∣∣ , (23)

with (d,∆l) 6= (03, 0), where 03 is the zero vector of size three.
First, we conclude that arbitrary spectrally white excitation signals
lead to the same coherence of the CS problem, independent of their
spectral phases. Further, for determining the coherence of A, only
varying tupels of frequency differences (d,∆l) have to be regarded.
Compared to the naive approach of testing any scalar product be-
tween two different columns, this knowledge reduces the effort for
computing the coherence of the CS matrix from a quadratic problem
in O(U2) to a linear problem in O(U), where U = XY ZL is the
number of unknown parameters. Since (11) is a real-valued signal in
practice, the particular spectra in A are conjugate symmetric, which
may be exploited for saving further computational cost.

The theoretical guarantees for CS based recovery improve for
lower coherence, thus, the microphone trajectory is considered opti-
mal for the set of parameters P = {(rD(n),G)} minimizing (23).
The expression (23) may be used for both of the following tasks that
arise in practice: finding the optimal trajectory for a sought grid in
space and modeling an optimal grid for a given measurement.

Indeed, a perfect interpolator with ideal frequency response is
unrealizable in practice. Nevertheless, considering a virtual grid
leading to spatial oversampling by factor α > 2, the FD filter ap-
proximation by an appropriate Lagrange interpolator achieves ideal
magnitude and phase response for the relevant frequency range
where the bandlimited signal actually lives [29]. Accordingly, all
columns of the CS matrix that potentially span the measurement
space may be described by (16) and their coherence is given by (23).

4. FAST CS ALGORITHM FOR RIR RECOVERY

In the experimental part of this paper, we adapt the IHT algorithm
for CS based sound-field recovery. The IHT method provides near-
optimal and robust error guarantees for estimating the solution of
(1) and requires low effort in computation and memory [24]. It ap-
proaches the optimum by applying the simple update rule

ĉ(i+1) = TK
{
ĉ(i) + µΨAT (x−AΨH ĉ(i))

}
, (24)

where µ is the step size and TK is the nonlinear thresholding op-
erator that sets all but the K largest absolute values in the updated
signal to zero. Applied to our sound-field sampling model (5), (24)
simplifies to a fast update scheme involving the calculation of the
residuum according to

ε(i) = x−
N∑
u=1

ΦuSĥ
(i)
u , (25)

the update of the estimated grid RIRs subject to

ĥ(i+1)
u = ĥ(i)

u + µSTΦuε
(i), (26)
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and the transform of the estimated sound-field variables ĥ(i) into
their sparse frequency representation ĉ(i) for hard thresholding. In
(25) and (26), the convolutions of the source signal with the esti-
mated RIRs and the residuum, respectively, can be computed very
efficiently in Fourier domain. The diagonal matrices Φu only con-
tribute weighting factors subject to the spatial interpolation.

5. EXPERIMENTS AND RESULTS

For the following experiments, we simulated RIRs and microphone
measurements by use of the image source method [30] considering
a room of size 5.8 m × 4.15 m × 2.55 m. The reverberation time
of the room was chosen as RT60 = 0.3 s. The cutoff frequency of
the RIRs was fc = 4 kHz. The position of the sound source was
set to [1.4, 1.6, 1.0]T in a world coordinate system with unit 1 m.
The origin of the spatial grid G was set to r0 = [2.75, 1.4, 0.8]T .
For excitation, we used white Gaussian noise with power σ2

s = 1.
Measurements were taken by one moving microphone performing a
Lissajous trajectory with frequency ratio fx/fy = 3/4 [31] cover-
ing the entire region of interest. For the recordings, white Gaussian
noise with a signal-to-noise ratio of 30 dB was added. In order to
allow for a baseline of the reconstruction quality and to compare
our CS based recovery with the strategy used in [11, 12], where the
sound-field estimate was the least-squares (LS) solution obtained by
the pseudoinverse of A, we consider a sampling scenario ensuring
that the system matrix is small enough to allow for computing the
pseudoinverse. Thus, we sampled the sound-field on a planar grid
of size 5 × 5 with spacing ∆x,y = 0.025 m at fixed height 0.8 m.
The RIRs were limited to length L = 500. In total, this problem
involves U = 12500 sound-field variables. Of course, the CS recov-
ery scheme from Sec. 4 is practical for much larger problems, since
for updating the estimate only fast Fourier transforms, point-wise
multiplications and vector summations are required.

As evaluation criterion for the quality of the recovered sound-
field involving N grid RIRs, the mean normalized system misalign-
ment [11, 12]

MNSM =
1

N

N∑
u=1

‖hu − ĥu‖2`2
‖hu‖2`2

(27)

is used, with hu ∈ RL containing the true RIR and ĥu ∈ RL
being the reconstructed RIR at grid index u. Several numbers of
M ∈ {15000, 10000, 8000, 6000} samples taken along the Lis-
sajous trajectory were tested for reconstruction. The sampling pro-
cess was modeled with φn(g) being the Lagrange interpolator and
having full support on the grid. For the CS based recovery via IHT,
the step size µ = 10−4 was chosen. As sparse frequency represen-
tation of the sound-field variables we used their Fourier transforms.
The iterative recovery was started with ĉ(0) = 0U . Beginning with
a small K, the sparsity constraint was successively relaxed every 50
iterations, so that K = M/2 was reached after 500 iterations.

The MNSMs of the CS based sound-field estimates subject to the
number of iterations are presented in Fig. 1(a). The markers on the
curves indicate the successive sparsity relaxations. The linear system
is overdetermined only for M = 15000 = 1.2U . The error of its
unique LS solution is the dashed baseline in Fig. 1(a) at −8.23 dB.
In comparison with that, for the same number of samples, the IHT
algorithm obtains a significant reduction of the error to −14.02 dB.
For a lower number of M = 10000 = 0.8U samples, there is no
unique LS solution, but the proposed CS method is still competitive
and achieves an error of −9.24 dB. Thus, the IHT solution for the
underdetermined case is even better than the LS solution obtained
by 40% more samples. In Fig. 1(b), the corresponding energies of
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Fig. 1. Results for CS based sound-field recovery using the IHT
algorithm, with (a) the errors of the sound-field estimates and (b) the
energies of the residual signals for different numbers of samples M ,
and U = 12500 unknown variables. The dashed lines indicate the
results of the least-squares solution for M = 15000.

the residual signals are presented. The IHT algorithm converges to
a minimal residuum. After about 400 iterations the residuum still
decreases, whereas the actual accuracy gain for the sound-field esti-
mate stagnates as shown in Fig. 1(a). This is due to the non-perfect
measurement model, which contains inconsistencies caused by mea-
surement noise and non-perfect spatial interpolation.

6. CONCLUSION

In this paper, we presented a CS framework for the sound-field re-
covery from samples taken by moving microphones. By knowing
the source signal and the microphone positions, a linear system of
equations can be set up that leads to the estimation of RIRs on a
uniform grid. In order to ensure a stable and robust sound-field re-
covery even in the underdetermined case, a CS solution involving
additional regularization has been derived. It exploits the sparsity of
sound fields in frequency domain. The structure of the resulting CS
matrix and its dependency on the microphone trajectory have been
shown. Based on that, a simple trajectory-dependent expression for
the coherence of measurements given spectrally flat excitation has
been derived. It enables us to efficiently evaluate microphone tra-
jectories in terms of CS reconstruction. Finally, a simple iterative
scheme according to the IHT algorithm has been provided allowing
for CS based sound-field recovery at low cost in computation and
memory. Further extensions exploiting also the sparsity of the early-
reflection part of RIRs are currently under investigation.
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