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ABSTRACT

The prevalence of exact repetition in loop-based music makes it an
opportune target for source separation. Nonnegative factorization
approaches have been used to model the repetition of looped con-
tent, and kernel additive modeling has leveraged periodicity within a
piece to separate looped background elements. We propose a novel
method of leveraging periodicity in a factorization model: we treat
the two-dimensional spectrogram as a three-dimensional tensor, and
use nonnegative tensor factorization to estimate the component spec-
tral templates, rhythms and loop recurrences in a single step. Testing
our method on synthesized loop-based examples, we find that our
algorithm mostly exceeds the performance of competing methods,
with a reduction in execution cost. We discuss limitations of the al-
gorithm as we demonstrate its potential to analyze larger and more
complex songs.

Index Terms— nonnegative tensor factorization, source separa-
tion, loop-based music, repetition

1. INTRODUCTION

Repetition is a defining aspect of music, and occurs at multiple
timescales [1]. Many approaches to source separation take advan-
tage of this: for example, nonnegative matrix factorization (NMF)
can model a sustained note with a single spectral template and a
time-varying activation function. Nonnegative matrix factor de-
convolution (NMFD) can model non-stationary notes with a single
time-varying spectrogram excerpt and a sparse activation function
indicating the onsets of pattern instances [2]. Different notes often
lead to the same spectral templates, only shifted in pitch; extensions
to NMFD anticipate these cases [3].

None of the algorithms in this family of nonnegative approaches
take advantage of another kind of repetition, periodicity, which is
the core of the REPET algorithm [4]. In it, a spectrogram frag-
ment corresponding to an individual measure of music is compared
to the spectrogram’s median values across multiple measures, en-
abling separation of a repeating background and an independent
foreground.

In this work, we introduce a similar technique to model periodic
repetition in music using a nonnegative approach. Like with REPET,
we divide the spectrogram into measure-length slices. Our key in-
sight is that by stacking these slices in a new dimension, we can
apply nonnegative tensor factorization (NTF) to estimate spectral,
metric, and measure-based templates (see Fig. 1). In this way, we
leverage many kinds of repetition at once: the short-term repetitions
of NMF, the medium-term repetitions of NMFD, and the long-term
repetitions of REPET. NTF was previously used to model the gain
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Fig. 1. Algorithm pipeline: the mixture magnitude spectrogram X
is divided into measure-length fragments; these are stacked into a
tensor X; the tensor is factorized; the pattern activations in D are
unfolded one at a time into rq estimated source spectrograms.

of elements common to both channels in a stereo signal [5], and the
NMF variants cited above, including shift-invariant NMFD, can be
formulated as NTF. However, we are not aware of any previous use
of NTF to model periodicity.

Our approach is especially suited to pieces of music based on
loops. Loops are short clips of audio that are repeated frequently, of-
ten in a way that defines the metre of the piece. We will compare our
approach to two methods of source separation tailored to loop-based
music: López-Serrano et al.’s NMFD approach [6] and Seethara-
man and Pardo’s iterative NMF algorithm [7]. López-Serrano et al.
showed that a standard NMFD algorithm, provided with the num-
ber of expected loop templates and their length, was effective for
discovering the activation patterns of the loops.

In contrast, the iterative NMF approach exploits a typical com-
positional technique in electronic dance music (EDM): the iterative
building up of layers of loops. An example layout, based on the syn-
thetic data used in [6] and re-used in this work, is shown in Fig. 2.
Assuming the target track has such a structure, iterative NMF first
trains an NMF model on a small initial excerpt. This model is used
to reconstruct the rest of the piece; with reference to Fig. 2, this is
like modeling the first loop ‘A’ in order to subtract ‘A’ from the rest
of the mix. The algorithm detects the onset of the next new loop as
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Fig. 2. Example input and output of the system. Top: composed
layout of a loop-based piece of music. Middle: estimated templates
corresponding to the notes, rhythms, and loop types in the audio.
Bottom: source-separated signals.

a spike in the reconstruction error, and repeats the same steps.
In contrast to iterative NMF, our NTF approach does not require

the composition to unfold in an additive manner. We show that our
approach is faster to compute than a competitive implementation of
NMFD and gives a more compact model, since rhythms shared by
multiple spectral templates are encoded together. And in contrast to
foreground/background separation with REPET, NTF can simulta-
neously separate multiple independent signals.

2. METHOD

2.1. Tensor construction

Beginning with the mixture signal, we apply the Short-Term Fourier
Transform to obtain a power spectrogram X ∈ RM×N . From there,
the pipeline of our algorithm is illustrated in Fig. 1. We perform
downbeat estimation using the madmom package [8], obtaining the
frame index at which each measure starts.

We cut X at the downbeats into segments of size M × P ,
where P is the maximum downbeat period, and stack the Q seg-
ments on top of each other to create a three-dimensional tensor
X ∈ RM×P×Q. Since the segments will vary slightly in length, we
zero-pad measures shorter than P frames. In future work, it may be
helpful to instead time-warp each segment to improve alignment.

We call the tensor X a “spectral cube”. Slicing the cube in dif-
ferent dimensions reveals different patterns, as illustrated in Fig. 3.
The matrix X[:,:,n] returns the spectrogram of the nth measure, an
M × P matrix. X[:,n,:] selects a single time index n within the
period—i.e., a single metrical position—and shows the spectrum at
that position across all measures, an M ×Q matrix. Finally, X[n,:,:]

selects a single frequency bin n, and shows how it evolves through-
out each measure (from bottom to top) throughout the piece (from
left to right), a P ×Q matrix. In Fig. 3, we observe redundancies in
each dimensional slice: steady-state tones within measures (Fig. 3a);
groups of tones that recur with the same period (Fig. 3b); and rhyth-
mic patterns that recur throughout the piece (Fig. 3c).

2.2. Tensor decomposition

In standard NMF, we estimate the rank-r decomposition of the spec-
trogram X as the outer product of W and H:

X ≈ X̂ = W ◦H (1)

where W ∈ RM×r is a matrix of r spectral templates and H ∈
Rr×N is a matrix of r activation functions. The templates and acti-
vation functions are paired: the outer product of the ith pair, W[:,i] ◦
H[i,:], is a matrix the size of the original spectrum giving the contri-
bution of the ith template.

Nonnegative tensor factorization extends NMF to higher di-
mensions, allowing one to find dependencies across all dimensions
(see [9] for a detailed reference). We discuss one version of NTF,
the nonnegative Tucker decomposition, which we compute using
TensorLy [10]. Whereas we choose a single rank r for NMF, the
Tucker decomposition requires three ranks, (rm, rp, rq). It models
the tensor X as:

X ≈ X̂ = C ◦ (W ◦H ◦D) (2)

where C ∈ Rrm×rp×rq is the “core tensor”, which can be “un-
folded” by taking the outer product with the three template matrices
W,H and D to obtain an approximation of X. These template ma-
trices are: W ∈ RM×rm , a set of rm spectral templates (‘notes’),
like before; H ∈ RP×rp , a set of rp activation patterns, but now ex-
pressed as a function of metrical position instead of time (‘rhythms’);
and D ∈ RQ×rq , a set of rq repetition patterns, each indicating how
a sound may repeat across the piece (‘loops’). The patterns are not
paired off like with NMF; instead, the pixel C[i,j,k] encodes how any
note Wi repeats with rhythm Hj in loop Dk. An example of W,H
and D are shown in Fig. 2.

The loop templates in D directly model the structure of the
piece, similar to the activation functions in NMFD, but presuming
a consistent period. To estimate the signal associated with the kth

loop type, unfold a single repetition pattern in D to get the estimated
source spectrum X̂k = C[:,:,k] ◦(W ◦H ◦D[:,k]). We use soft mask-
ing with power = 2 to estimate the source signal (see librosa [11] for
details).

The Tucker decomposition is a very compact representation. To
model the song in Fig. 2, NMFD required over 1.36 million values
(4(M · P + N)); iterative NMF required 148,928 values (4rm ·
(M +N)); and NTF required 22,704 values (rmM + rpP + rqQ+
rmrprq), with M = 1024, P = 330, Q = 8, rm = 32, rp =
40, rq = 4.

Some limitations of the NTF algorithm can be noted immedi-
ately. First, the method depends on there being a close alignment be-
tween the spectra of each measure. If the downbeat tracking fails, or
the measures are of varying length to begin with, NTF will not model
the signal effectively. Second, while the factorization strives to esti-
mate templates with independent columns (i.e., so that the columns
of D look different), redundancies in the core tensor can occur. That
is, different estimated loops can end up sounding similar. For exam-
ple, in analyzing the song in Fig. 2, instead of learning templates that
match A,B,C and D, it could learn templates for A,B, (A + C)
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Fig. 3. Three slices of the spectral cube X constructed for the song “El Pico” by Ratatat. From left to right: (a) a single measure; (b) a single
metrical position (the second beat onset); (c) a single frequency bin (pointing to the E above middle C).

and (B + D); this decomposition also models the piece perfectly,
but not in the desired way. However, this is also a shortcoming of
NMFD. Modifying the NTF algorithm to enforce independence be-
tween loops is a goal for future work.

3. EVALUATION

We test our proposed NTF approach against two published al-
gorithms: NMFD [12]1 and iterative NMF [7], which we re-
implemented. Moreover, we test standard and guided versions
of each algorithm; i.e., versions with or without knowledge of the
ground truth downbeat locations.

We evaluate the source separation quality of all algorithms using
the standard trio of metrics, signal-to-distortion ratio (SDR), signal-
to-interference ratio (SIR) and signal-to-artifact ratio (SAR), com-
puted with mir eval [14]. For NTF and NMFD, we also evaluate the
quality of the estimated map of sample activations using two met-
rics: correlation, also reported by [6]; and accuracy (which requires
binarizing the estimated activations).

All metrics (SDR, SIR, SAR, correlation, accuracy) compare
two audio tracks or two activation functions. To compare a set of
4 estimated tracks to the 4 ground truth tracks, we test all permu-
tations and report the highest result. Iterative NMF sometimes esti-
mates more sources, but we kept only the first 4 for evaluation. Every
other algorithm was explicitly informed with the correct number of
loops, 4. Testing how sensitive each algorithm is to changes in this
parameter is an important task for future work. Additional details:

• NTF (proposed): as described in Section 2, with rm =
32, rp = 40, rq = 4. We picked values for rm and rp that
were much less than M = 1024 and P ≈ 330, respectively,
and which gave fair results for songs like that in Fig. 3.

• NTF (guided): the true downbeats are used instead of the
madmom beat tracking output.

• Iterative NMF: as described in [7], with r = 8 (for each of
the 4 NMF model).

• Iterative NMF (guided): we provide the correct ‘next bound-
ary’ time at which a new loop is introduced.

• NMFD: as described in [6], using log-frequency spectro-
gram; we provide P , the true template size.

1http://www2.imm.dtu.dk/pubdb/p.php?4499 [13]

Fig. 4. New layouts tested besides the composed layout in Fig. 2.

• NMFD (guided): we also initialize the activation matrix H to
be 1 at the true downbeat frames (and their immediate neigh-
bours) and zeros elsewhere.

We apply all the algorithms to the same audio dataset created
by [6], which was published openly.2 The set contains songs in
seven styles of EDM, each with the same compositional layout of
four loops, as shown in Fig. 2. This composed layout fits the assump-
tion that tracks will be introduced iteratively, and as stated above it
can be decomposed into four templates in at least two valid ways. To
compare the algorithms when the iterative assumption does not hold
and when the loops are less linearly dependent, we created two new
layouts, illustrated in Fig. 4, using the same audio.3 The factorial
layout contains all 15 possible combinations of the loops, arranged
iteratively. The shuffled factorial layout contains the same combina-
tions of loops, but in a shuffled order. The loops (‘A’ to ‘D’) range
from 6 to 8 seconds long, so the composed clips range in length from
50–64 seconds and the factorial clips from 93–120 seconds.

4. RESULTS AND DISCUSSION

The source separation results for the unguided algorithms are re-
ported in Fig. 5a. Comparing the unguided algorithms (darker
colours), NMFD performs the best overall, but the proposed algo-
rithm (NTF) achieves high SIR, indicating the estimated sources are

2https://www.audiolabs-erlangen.de/resources/
MIR/2016-ISMIR-EMLoop

3https://github.com/jblsmith/icassp2018
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Fig. 5. (a) Source separation quality (higher is better). (b) Layout prediction correlation and accuracy (higher is better), and algorithm runtime
(lower is better).

very independent. However, comparing the algorithms guided with
the correct downbeats (paler colours), the NTF approach takes a
clear lead overall, especially in SIR, where it approaches the quality
of the ideal mask on the factorial layouts. Among the nine setups (3
metrics × 3 datasets), guided NTF is surpassed twice: by iterative
NMF, for SDR and SAR, in the composed layout it is tailored to.

Listening to the output of our algorithm in cases where it failed,
our algorithm seemed to devote excess modeling power to the drum
track. The drum was usually the loudest loop, so perhaps focusing
on the drum track was the optimal way, in the least-squares sense, to
model the signal.

Analyzing the loop structure of a piece is of interest for source
separation, but also as a type of transcription. The quality of the loop
activation transcriptions is shown in Fig. 5b. (For NTF, this tran-
scription is D; for NMFD, it is the activation function at the down-
beat samples and their neighbours, summed together.) We mea-
sure the correlation between these real-valued transcriptions and the
ground truth layout. We also binarize the transcriptions by scal-
ing each column dk in D between 0 and 1, and keeping all values
above 0.5. We can then measure the simple accuracy of the binarized
transcriptions. On both metrics, the performance of NTF surpasses
NMFD. Also, the quality of the NTF loop transcription appears to
be less sensitive to downbeat estimation errors (i.e., less need for
guidance). Finally, we note the mean running time for each algo-
rithm (Fig. 5b). While the average runtime was under 30 seconds
for both NTF and iterative NMF, the average for NMFD was over
10 minutes. However, each system relies on code components from
different public sources, so there is no guarantee they each is com-
parably optimized.

Compared to NMFD, NTF strikes the following compromise:
reduced runtime (and model size), and increased source indepen-
dence (SIR) and layout accuracy—at the cost of more artefacts
(SAR) and greater reconstruction error (SDR). Compared to itera-
tive NMF, NTF has slightly greater runtime, improved independence
(SIR) and similar reconstruction error (SDR)—at the cost of more
artefacts (SAR).

We observed the high quality SIR of NTF compared to other

metrics. Also, while NTF was clearly best for describing loop lay-
out, it required accurate downbeats to exceed the others on source
separation. Both results are explained by noting that NTF gives a
conservative estimate of the sources: it only groups together sounds
which recur precisely. Thus, if the downbeats are more precise, it
can model more of the power spectrum. While this is a limitation
for source separation, it may be the source of its advantage in layout
description: by conservatively modeling only the precisely-recurring
sounds, it estimates a much cleaner map of the loop activations, even
when the downbeats are not provided. This highlights the potential
to apply NTF to structure analysis.

An important caveat is that we did not study the effect of varying
rq , the number of loop types anticipated; instead, we informed each
algorithm with the correct rank, 4. A key feature of iterative NMF is
that it obviates the need to pre-select this rank. Thus, future evalu-
ations of NTF should demonstrate robustness to incorrect values, or
propose a method of estimating the rank automatically.

5. CONCLUSION

We have introduced a nonnegative approach to source separation that
exploits the periodicity of musical signals. Although the quality of
its source separation depends on the quality of the downbeat estima-
tion, it is a robust method of estimating loop activations.

The model we presented may be extended by adding new dimen-
sions (e.g., by stacking harmonics in the manner of [15]’s HCQT, or
by hierarchically adding a within-beat time dimension). Although
we analyzed the pieces at a single time-scale, a spectral cube may be
created for any timescale. Managing structures discovered at multi-
ple timescales remains a task for future work, along with enforcing
independence between the loop types.

Also, when using NMF for source separation, one may set r
much higher than the expected number of sources, and try to group
the templates according to timbral or temporal correlation [16]. This
approach could be used after NTF to further separate sources within
each loop pattern.
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