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ABSTRACT

The task of estimating the fundamental frequency of a monophonic
sound recording, also known as pitch tracking, is fundamental to
audio processing with multiple applications in speech processing and
music information retrieval. To date, the best performing techniques,
such as the pYIN algorithm, are based on a combination of DSP
pipelines and heuristics. While such techniques perform very well
on average, there remain many cases in which they fail to correctly
estimate the pitch. In this paper, we propose a data-driven pitch
tracking algorithm, CREPE, which is based on a deep convolutional
neural network that operates directly on the time-domain waveform.
We show that the proposed model produces state-of-the-art results,
performing equally or better than pYIN. Furthermore, we evaluate
the model’s generalizability in terms of noise robustness. A pre-
trained version of CREPE is made freely available as an open-source
Python module for easy application.

Index Terms— pitch estimation, convolutional neural network

1. INTRODUCTION

Estimating the fundamental frequency (f0) of a monophonic audio
signal, also known as pitch tracking or pitch estimation, is a long-
standing topic of research in audio signal processing. Pitch esti-
mation plays an important role in music signal processing, where
monophonic pitch tracking is used as a method to generate pitch
annotations for multi-track datasets [1] or as a core component of
melody extraction systems [2, 3]. Pitch estimation is also important
for speech analysis, where prosodic aspects such as intonations may
reflect various features of speech [4].

Pitch is defined as a subjective quality of perceived sounds and
does not precisely correspond to the physical property of the fun-
damental frequency [5]. However, apart from a few rare excep-
tions, pitch can be quantified using fundamental frequency, and thus
they are often used interchangeably outside psychoacoustical stud-
ies. For convenience, we will also use the two terms interchangeably
throughout this paper.

Computational methods for monotonic pitch estimation have
been studied for more than a half-century [6], and many reliable
methods have been proposed since. Earlier methods commonly em-
ploy a certain candidate-generating function, accompanied by pre-
and post-processing stages to produce the pitch curve. Those func-
tions include the cepstrum [6], the autocorrelation function (ACF)
[7], the average magnitude difference function (AMDF) [8], the nor-
malized cross-correlation function (NCCF) as proposed by RAPT
[9] and PRAAT [10], and the cumulative mean normalized differ-
ence function as proposed by YIN [11]. More recent approaches
include SWIPE [12], which performs template matching with the
spectrum of a sawtooth waveform, and pYIN [13], a probabilistic
variant of YIN that uses a Hidden Markov Model (HMM) to decode

the most probable sequence of pitch values. According to a few
comparative studies, the state of the art is achieved by YIN-based
methods [14, 15], with pYIN being the best performing method to
date [13].

A notable trend in the above methods is that the derivation
of a better pitch detection system solely depends on cleverly de-
vising a robust candidate-generating function and/or sophisticated
post-processing steps, i.e. heuristics, and none of them are di-
rectly learned from data, except for manual hyperparameter tuning.
This contrasts with many other problems in music information re-
trieval like chord ID [16] and beat detection [17], where data-driven
methods have been shown to consistently outperform heuristic ap-
proaches. One possible explanation for this is that since fundamental
frequency is a low-level physical attribute of an audio signal which
is directly related to its periodicity, in many cases heuristics for
estimating this periodicity perform extremely well with accuracies
(measured in raw pitch accuracy, defined later on) close to 100%,
leading some to consider the task a solved problem. This, however,
is not always the case, and even top performing algorithms like
pYIN can still produce noisy results for challenging audio record-
ings such as a sound of uncommon instruments or a pitch curve that
fluctuates very fast. This is particularly problematic for tasks that
require a flawless f0 estimation, such as using the output of a pitch
tracker to generate reference annotations for melody and multi-f0
estimation [18, 19].

In this paper, we present a novel, data-driven method for mono-
phonic pitch tracking based on a deep convolutional neural network
operating on the time-domain signal. We show that our approach,
CREPE (Convolutional Representation for Pitch Estimation), ob-
tains state-of-the-art results, outperforming heuristic approaches
such as pYIN and SWIPE while being more robust to noise too. We
further show that CREPE is highly precise, maintaining over 90%
raw pitch accuracy even for a strict evaluation threshold of just 10
cents. The Python implementation of our proposed approach, along
with a pre-trained model of CREPE are made available online1 for
easy utilization and reproducibility.

2. ARCHITECTURE

CREPE consists of a deep convolutional neural network which oper-
ates directly on the time-domain audio signal to produce a pitch es-
timate. A block diagram of the proposed architecture is provided in
Figure 1. The input is a 1024-sample excerpt from the time-domain
audio signal, using a 16 kHz sampling rate. There are six convolu-
tional layers that result in a 2048-dimensional latent representation,
which is then connected densely to the output layer with sigmoid ac-
tivations corresponding to a 360-dimensional output vector ŷ. From
this, the resulting pitch estimate is calculated deterministically.

1https://github.com/marl/crepe
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Fig. 1: The architecture of the CREPE pitch tracker. The six convolutional layers operate directly on the time-domain audio signal, producing
an output vector that approximates a Gaussian curve as in Equation 3, which is then used to derive the exact pitch estimate as in Equation 2.

Each of the 360 nodes in the output layer corresponds to a spe-
cific pitch value, defined in cents. Cent is a unit representing musical
intervals relative to a reference pitch fref in Hz, defined as a function
of frequency f in Hz:

¢(f) = 1200 · log2
f

fref
, (1)

where we use fref = 10 Hz throughout our experiments. This unit
provides a logarithmic pitch scale where 100 cents equal one semi-
tone. The 360 pitch values are denoted as ¢1, ¢2, · · · , ¢360 and are
selected so that they cover six octaves with 20-cent intervals between
C1 and B7, corresponding to 32.70 Hz and 1975.5 Hz. The resulting
pitch estimate ¢̂ is the weighted average of the associated pitches ¢i

according to the output ŷ, which gives the frequency estimate in Hz:

¢̂ =

∑360
i=1 ŷi¢i∑360
i=1 ŷi

, f̂ = fref · 2
ˆ¢/1200. (2)

The target outputs we use to train the model are 360-dimensional
vectors, where each dimension represents a frequency bin covering
20 cents (the same as the model’s output). The bin corresponding to
the ground truth fundamental frequency is given a magnitude of one.
As in [19], in order to soften the penalty for near-correct predictions,
the target is Gaussian-blurred in frequency such that the energy sur-
rounding a ground truth frequency decays with a standard deviation
of 25 cents:

yi = exp

(
− (¢i − ¢true)

2

2 · 252

)
, (3)

This way, high activations in the last layer indicate that the input
signal is likely to have a pitch that is close to the associated pitches
of the nodes with high activations.

The network is trained to minimize the binary cross entropy be-
tween the target vector y and the predicted vector ŷ:

L(y, ŷ) =
360∑
i=1

(−yi log ŷi − (1− yi) log(1− ŷi)) , (4)

where both yi and ŷi are real numbers between 0 and 1. This loss
function is optimized using the ADAM optimizer [20], with the
learning rate 0.0002. The best performing model is selected after
training until the validation accuracy no longer improves for 32
epochs, where one epoch consists of 500 batches of 32 examples
randomly selected from the training set. Each convolutional layer is
preceded with batch normalization [21] and followed by a dropout
layer [22] with the dropout probability 0.25. This architecture and
the training procedures are implemented using Keras [23].

3. EXPERIMENTS

3.1. Datasets

In order to objectively evaluate CREPE and compare its performance
to alternative algorithms, we require audio data with perfect ground
truth annotations. This is especially important since the performance
of the compared algorithms is already very high. In light of this,
we cannot use a dataset such as MedleyDB [1], since its annota-
tion process includes manual corrections which do not guarantee a
100% perfect match between the annotation and the audio, and it
can be affected, to a degree, by human subjectivity. To guarantee a
perfectly objective evaluation, we must use datasets of synthesized
audio in which we have perfect control over the f0 of the resulting
signal. We use two such datasets: the first, RWC-synth, contains
6.16 hours of audio synthesized from the RWC Music Database [24]
and is used to evaluate pYIN in [13]. It is important to note that the
signals in this dataset were synthesized using a fixed sum of a small
number of sinusoids, meaning that the dataset is highly homogenous
in timbre and represents an over-simplified scenario. To evaluate
the algorithms under more realistic (but still controlled) conditions,
the second dataset we use is a collection of 230 monophonic stems
taken from MedleyDB and re-synthesized using the methodology
presented in [18], which uses an analysis/synthesis approach to gen-
erate a synthesized track with a perfect f0 annotation that maintains
the timbre and dynamics of the original track. This dataset consists
of 230 tracks with 25 instruments, totaling 15.56 hours of audio, and
henceforth referred to as MDB-stem-synth.

3.2. Methodology

We train the model using 5-fold cross-validation, using a 60/20/20
train, validation, and test split. For MDB-stem-synth, we use artist-
conditional folds, in order to avoid training and testing on the same
artist which can result in artificially high performance due to artist or
album effects [25]. The evaluation of an algorithm’s pitch estimation
is measured in raw pitch accuracy (RPA) and raw chroma accuracy
(RCA) with 50 cent thresholds [26]. These metrics measure the pro-
portion of frames in the output for which the output of the algorithm
is within 50 cents (a quarter-tone) of the ground truth. We use the
reference implementation provided in mir eval [27] to compute
the evaluation metrics.

We compare CREPE against the current state of the art in mono-
phonic pitch tracking, represented by the pYIN [13] and SWIPE [12]
algorithms. To examine the noise robustness of each algorithm, we
also evaluate their pitch tracking performance on degraded versions
of MDB-stem-synth, using the Audio Degradation Toolbox (ADT)
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[28]. We use four different noise sources provided by the ADT: pub,
white, pink, and brown. The pub noise is an actual recording of the
sound in a crowded pub, and the white noise is a random signal with
a constant power spectral density over all frequencies. The pink and
brown noise have the highest power spectral density in low frequen-
cies, and the densities fall off at 10 dB and 20 dB per decade respec-
tively. We used seven different signal-to-noise ratio (SNR) values:
∞, 40, 30, 20, 10, 5, and 0 dB.

3.3. Results

3.3.1. Pitch Accuracy

Table 1 shows the pitch estimation performance tested on the two
datasets. On the RWC-synth dataset, CREPE yields a close-to-
perfect performance where the error rate is lower than the baselines
by more than an order of magnitude. While these high accuracy
numbers are encouraging, those are achievable thanks to the highly
homogeneous timbre of the dataset. In order to test the generaliz-
ability of the algorithms on a more timbrally diverse dataset, we
evaluated the performance on the MDB-stem-synth dataset as well.
It is notable that the degradation of performance from RWC-synth is
more significant for the baseline algorithms, implying that CREPE
is more robust to complex timbres compared to pYIN and SWIPE.

Finally, to see how the algorithms compare under scenarios
where any deviation in the estimated pitch from the true value could
be detrimental, in Table 2 we report the RPA at lower evaluation
tolerance thresholds of 10 and 25 cents as well as the RPA at the
standard 50 cents threshold for reference. We see that as the thresh-
old is decreased, the difference in performance becomes more ac-
centuated, with CREPE outperforming by over 8 percentage points
when the evaluation tolerance is lowered to 10 cents. This suggests
that CREPE is especially preferable when even minor deviations
from the true pitch should be avoided as best as possible. Obtain-
ing highly precise pitch annotations is perceptually meaningful for
transcription and analysis/resynthesis applications.

3.3.2. Noise Robustness

Noise robustness is key to many applications like speech analysis for
mobile phones or smart speakers, or for live music performance. In
Figure 2 we show how the pitch estimation performance is affected
when an additive noise is present in the input signal. CREPE main-
tains the highest accuracy for all SNR levels for pub noise and white
noise, and for all SNR levels except for the highest level of pink
noise. Brown noise is the exception where pYIN’s performance is
almost unaffected by the noise. This can be attributed to the fact that

Dataset Metric CREPE pYIN SWIPE

RWC-
synth

RPA 0.999±0.002 0.990±0.006 0.963±0.023

RCA 0.999±0.002 0.990±0.006 0.966±0.020

MDB-
stem-
synth

RPA 0.967±0.091 0.919±0.129 0.925±0.116

RCA 0.970±0.084 0.936±0.092 0.936±0.100

Table 1: Average raw pitch/chroma accuracies and their standard
deviations, tested with the 50 cents threshold.

Dataset Threshold CREPE pYIN SWIPE

RWC-
synth

50 cents 0.999±0.002 0.990±0.006 0.963±0.023

25 cents 0.999±0.003 0.972±0.012 0.949±0.026

10 cents 0.995±0.004 0.908±0.032 0.833±0.055

MDB-
stem-
synth

50 cents 0.967±0.091 0.919±0.129 0.925±0.116

25 cents 0.953±0.103 0.890±0.134 0.897±0.127

10 cents 0.909±0.126 0.826±0.150 0.816±0.165

Table 2: Average raw pitch accuracies and their standard deviations,
with different evaluation thresholds.

brown noise has most of its energy at low frequencies, to which the
YIN algorithm (on which pYIN is based) is particularly robust.

To summarize, we confirmed that CREPE performs better in all
cases where the SNR is below 10 dB while the performance varies
depending on the spectral properties of the noise when the noise level
is higher, which indicates that our approach can be reliable under a
reasonable amount of additive noise. CREPE is also more stable,
exhibiting consistently lower variance in performance compared to
the baseline algorithms.

3.3.3. Model Analysis

To gain some insight into the CREPE model, in Figure 3 we visual-
ize the spectra of the 1024 convolutional filters in the first layer of
the neural network, with histograms of the ground-truth frequencies
to the right of each plot. It is noticeable that the filters learned from
the RWC-synth dataset have the spectral density concentrated be-
tween 600 Hz and 1500 Hz, while the ground-truth frequencies are
mostly between 100 Hz and 600 Hz. This indicates that the first con-
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Fig. 2: Pitch tracking performance when additive noise signals are present. The error bars are centered at the average raw pitch accuracies
and span the first standard deviations. With brown noise being a notable exception, CREPE shows the highest noise robustness in general.
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Fig. 3: Fourier spectra of the first-layer filters sorted by the fre-
quency of the peak magnitude. Histograms on the right show the dis-
tribution of ground-truth frequencies in the corresponding dataset.
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Fig. 4: The raw pitch accuracy (RPA) of CREPE’s predictions on
each of the 230 tracks in MDB-stem-synth with respect to the in-
strument, sorted by the average frequency.

volutional layer in our model learns to distinguish the frequencies of
the overtones rather than the fundamental frequency. These filters
focusing on overtones are also visible for MDB-stem-synth, where
peak frequencies of the filters range well above the f0 distribution of
the dataset, but in this case, the majority of the filters overlap with
the ground-truth distribution, unlike RWC-synth. A possible expla-
nation for this is that since the timbre in RWC-synth is fixed and
identical for all tracks, the model is able to obtain a highly accurate
estimate of the f0 by modeling its harmonics. Conversely, when the
timbre is heterogeneous and more complex, as is the case for MDB-
stem-synth, the model cannot rely solely on the harmonic structure
and requires filters that capture the f0 periodicity directly in addition
to the harmonics. In both cases, this suggests that the neural network
can adapt to the distribution of timbre and frequency in the dataset
of interest, which in turn contributes to the higher performance of
CREPE compared to the baseline algorithms.

3.3.4. Performance by Instrument

The MDB-stem-synth dataset contains 230 tracks from 25 differ-
ent instruments, where electric bass (58 tracks) and male singer (41
tracks) are the most common while there are instruments that occur
in only one or two tracks. In Figure 4 we plot the performance of
CREPE on each of the 230 tracks, with respect to the instrument of
each track. It is notable that the model performs worse for the in-
struments with higher average frequencies, but the performance is
also dependent on the timbre. CREPE performs particularly worse
on the tracks with the dizi, a Chinese transverse flute, because the
tracks came from the same artist, and they are all placed in the same
split. This means that for the fold in which the dizi tracks are in
the test set, the training and validation sets do not contain a single
dizi track, and the model fails to generalize to this previously unseen
timbre. There are 5 instruments (bass clarinet, bamboo flute, and
the family of saxophones) that occur only once in the dataset, but
their performance is decent, because their timbres do not deviate too
far from other instruments in the dataset. For the flute and the violin,
although there are many tracks with the same instrument in the train-
ing set, the performance is low when the sound in the tested tracks
is too low (flute) or too high (violin) compared to other tracks of the
same instruments. The low performance on the piccolo tracks is due

to an error in the dataset where the annotation is inconsistent with
the correct pitch range of the instrument. Unsurprisingly, the model
performs well on test tracks whose timbre and frequency range are
well-represented in the training set.

4. DISCUSSIONS AND CONCLUSION

In this paper, we presented a novel data-driven method for mono-
phonic pitch tracking based on a deep convolutional neural network
operating on time-domain input, CREPE. We showed that CREPE
obtains state-of-the-art results, outperforming pYIN and SWIPE on
two datasets with homogeneous and heterogeneous timbre respec-
tively. Furthermore, we showed that CREPE remains highly accurate
even at a very strict evaluation threshold of just 10 cents. We also
showed that in most cases CREPE is more robust to added noise.

Ideally, we want the model to be invariant to all transformations
that do not affect pitch, such as changes due to distortion and rever-
beration. Some invariance can be induced by the architectural design
of the model, such as the translation invariance induced by pooling
layers in our model as well as in deep image classification models.
However, it is not as straightforward to design the model architecture
to specifically ignore other pitch-preserving transformations. While
it is still an intriguing problem to build an architecture to achieve
this, we could use data augmentation to generate transformed and
degraded inputs that can effectively make the model learn the invari-
ance. The robustness of the model could also be improved by ap-
plying pitch-shifts as data augmentation [29] to cover a wider pitch
range for every instrument. In addition to data augmentation, various
sources of audio timbre can be obtained from software instruments;
NSynth [30] is an example where the training dataset is generated
from the sound of software instruments.

Pitch values tend to be continuous over time, but CREPE esti-
mates the pitch of every frame independently without using any tem-
poral tracking, unlike pYIN which exploits this by using an HMM to
enforce temporal smoothness. We can potentially improve the per-
formance of CREPE even further by enforcing temporal smoothness.
In the future, we plan to do this by means of adding recurrent archi-
tecture to our model, which could be trained jointly with the con-
volutional front-end in the form of a convolutional-recurrent neural
network (CRNN).
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