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ABSTRACT

State of the art acoustic scene classification techniques often employ
features of large dimensionality, which are then used to train and per-
form inferences with kernel machines such as Support Vector Ma-
chines. However, the complexity of computing the non-linear kernel
matrix for these methods increases with the dimensionality of the
features and the size of the dataset. In this work, we introduce a new
scheme that hashes features, which combined with a linear function
approximates a non-linear Laplacian kernel. Each hash typically has
lower dimensionality than the input features and each component
is represented by one bit instead of floating values. Hence, allow-
ing efficient computation of the kernel matrix using XOR operations
rather than dot-products. Our scheme is demonstrated mathemati-
cally and tested in the 2017 DCASE: Acoustic Scene Classification.
The hashes reduce up to six powers of two the feature representation
with minimal loss of accuracy.

Index Terms— Acoustic Scene Classification, Laplacian Ker-
nel, Kernel Machines, Random Features, Hash

1. INTRODUCTION AND RELATED WORK
Acoustic Scene Classification (ASC) aims to identify a recording
as belonging to a predefined set of scene classes that characterizes
an environment, for example park, home, or office. Typically, ASC
approaches capture the diverse characteristics from the audio signal
by computing different types of features, either hand-crafted [1, 2,
3, 4, 5] or derived from Neural Networks [6, 7, 8]. These features
are commonly of high-dimensionality (in the order of thousands)
and some state of the art approaches used them to train and make
inferences with Support Vector Machines (SVMs), the best-known
member of kernel machines.

Through appropriate choice of kernel SVMs can approximate
non-linear functions or decision boundaries given enough train-
ing samples, however, the computation of the kernel matrix scales
poorly. The Kernel matrix’s time and storage complexity increases
in the dimensionality and number of the inputs, which contrasts
to linear functions, which can be computed much faster [9]. One
solution to take the best of both approaches is by computing random
features [10, 11, 12], which maps the input features into a random-
ized lower-dimensional feature space. Then, the resulting random
features are combined in a linear manner to approximate a non-linear
kernel, but at a much lower cost than direct computations of kernels.

Although kernel methods are common in ASC, random features
are unexplored in this topic. We applied random features to ASC
in [13] and reduced the dimensionality of the input features by one
third with minimal loss of performance. Further improvements can
be achieved by quantizing the random features.
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One effective method for quantizing features is through hash-
ing schemes [14]. Hashing schemes, roughly speaking, quantize the
random features to be represented with just one bit instead of real
numbers represented by 32 or 64 bits. This has significant impli-
cation in storage, because even if the dimensionality of the random
features is the same or larger than the input features dimension, the
overall size in bits of the transformed vector can be an order of mag-
nitude smaller. This reduction has benefits in storage, processing and
transmission [14].

Random features and hashing schemes are kernel dependent;
this means that to approximate different non-linear kernels we need
different kinds of random transformations of the input features. The
most popular and best-studied kernels are shift-invariant [15, 16],
such as Gaussian, Laplacian and Cauchy. The Gaussian employs the
`2 norm and the Laplacian employs the `1 norm, and although both
offer different benefits, the latter has been significantly less studied.
The Laplacian kernel, in particular, has outperformed the Gaussian
kernel without hashing schemes for sound-event classification [17,
18] and with hashing schemes for image processing [19, 20]. How-
ever, to the best of our knowledge, the mathematical and theoreti-
cal guarantees to employ hashing schemes to approximate Laplacian
kernels was unavailable in the literature.

In this paper, we introduce a new scheme that hashes features,
which are combined with a linear function to approximate a non-
linear Laplacian kernel. Additionally, the hashing reduces the di-
mensionality of real-valued vectors into bits-based representations
by reducing storage up to six powers of two. We evaluated our hash-
ing scheme in the context of the 2017 DCASE Task 1 - Acoustic
Scene Classification [21]. Our main contribution are the mathemat-
ical and theoretical guarantees to validate the approximation of the
Laplacian kernel, which was unavailable in the literature and can be
applied to tasks other than audio.

The organization of the paper is as follows: Section 2 describes
our hashing scheme and shows theoretical guarantees to support how
it approximates the Laplacian Kernel. Additionally, we explain how
the training and inference steps applied to an SVM can be simpli-
fied using our approach. In Section 3, we describe our experiments
and results on Acoustic Scene Classification, which are discussed in
Section 4. Finally, in Section 5 we summarized our work.

2. METHODS

In this section we describe the construction of our hashing scheme
and provide theoretical guarantees to validate its approximation to
the Laplacian kernel, which was unavailable in the literature. In ad-
dition, we describe its application to Support Vector Machines. The
full proofs of the following theorems are in our archive 1.

1http://www.andrew.cmu.edu/user/abelinoj/icassp2018/laplacian/app.pdf
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Fig. 1. The function h quantizes real values to -1 or 1 for each hash
component.

2.1. Hashing Scheme to Approximate Laplacian Kernel
In this subsection we show the definition of our hashing function,
how the inner product between hashes is related to the Laplacian
kernel and bounds of the expected value of such inner products.

The hashing scheme consists of a random transformation based
on the Cauchy distribution, which is fundamental for our proposal.
This distribution belongs to the p-stable distribution family, which
means that any linear combination of independent random variables
distributed as Cauchy will also be distributed as Cauchy. We use this
property to prove the main theorem of this paper. In this paper, we
considered the following definition.

Definition. Let X be a continuous random variable and γ > 0.
Then, X is distributed as Cauchy(γ) if its density function is given
by:

f(x ; γ) =
1

π
· γ

x2 + γ2
.

We can define a hash mapping by taking samples from a Cauchy
distribution. Our hashing function is defined as follows.

Definition. Let A be an M × N matrix such that its components
are independent and randomly generated according to a Cauchy(γ)
distribution, and U be a vector with M random independent compo-
nents distributed uniformly between 0 and 2. We define the transfor-
mation HA,U : RN → {− 1√

M
, 1√

M
}M as

HA,U (x) =
1√
M

h(Ax+ U),

where h is taken component-wise and it is given by

h(t) = 2 · (btc (mod 2))− 1 .

The periodic function h of period 2 is illustrated in Figure 1 and
can take values of either 1 or −1.

Thus, this transformation takes a real value vector with N com-
ponents and gives a vector with M components, which can be either

1√
M

or − 1√
M

. This definition is needed to ease the computation
between hashes for approximating a kernel. However, as we will see
in this paper, since we have a binary vector, each component can be
encoded using just one bit reducing the overall size of the hashed
data. The definition of our hash is similar to that provided in [14]
where a Gaussian distribution is used instead of a Cauchy.

In order to see the utility of this hashing function, we can ana-
lyze the inner product between hashes. Since we are working with a
random transformation, the next theorem provides an expression for
its expected value.

Theorem 1. ∀x1 , x2 ∈ RN , the expected value of inner product
between their corresponding transformed points is:

E
(〈
HA,U (x1) , HA,U (x2)

〉)
=

8

π2

∞∑
i=1

1

(2i− 1)2
exp

(
− π γ (2i− 1)‖x1 − x2‖1

)
.
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(b) Simulations

Fig. 2. (a) Theoretical Expression. Expectation of the inner prod-
uct between HA,U (x1) and HA,U (x2) as a function of ‖x1 − x2‖1
using Theorem 2 considering γ = 1 and γ = 0.2. We took the
first 5,000 terms of the series. (b) Simulations. Inner product be-
tween HA,U (x1) and HA,U (x2) as a function of ‖x1 − x2‖1 with
N = 5000, M = 2500 and γ = 1 and γ = 0.2.

This expression only depends on the `1 distance between the
original vectors x1 and x2. Figure 2(a) shows the shape of these
curves for fixed values of γ. It is easy to prove that this function
is decreasing and tends to 0 when ‖x1 − x2‖1 tends to infinity. In
addition, if x1 = x2, we can see that the previous expression is 1.

The expression given in Theorem 1 is not exactly the expression
for the Laplacian Kernel, which is properly defined as follows:

K(x1 , x2) = exp
(
− γ π ‖x1 − x2‖1

)
,

where γ is a parameter of the model.
However, we can find bounds which depend on this kernel. The

following proposition shows an upper and lower bound for the ex-
pected value of the inner product between hashes.
Proposition 1. If A and U follow the hypothesis of Theorem 1, we
have

8

π2
exp

(
− π γ‖x1 − x2‖1

)
≤

E
(〈
HA,U (x1) , HA,U (x2)

〉)
≤ exp

(
− π γ‖x1 − x2‖1

)
(1)

These inequalities show how similar the Laplacian Kernel
is compared to the expression given by Theorem 1. We can
see that the difference between these two kernels is bounded by
π2−8
π2 exp(−πγ‖x1 − x2‖1), which means that the difference de-

creases as ‖x1 − x2‖1 increases, converging to 0. Actually, in the
worse case, this is when ‖x1 − x2‖1 = 0, the difference between
these kernels is π2−8

π2 ≈ 0.189.
Nevertheless, both Theorem 1 and Proposition 1 are in expec-

tation and eventually the actual result given by the stochastic hash-
ing may differ. However, thanks to the Law of Large Numbers, the
Inner Product between HA,U (x1) and HA,U (x2) converges to the
expected value for large values ofM . In fact, at the moment of com-
puting the inner product between two hashes, we are performing an
operation which is a sum of IID random variables, divided by M ,
to obtain a simple average of random variables. Figure 2(b) shows
a simulation, where the empirical value is plotted as a function of
the actual `1 distance between vectors. We see here that the empiri-
cal estimate closely follows the plot for the theoretical expression in
figure 2(a).
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A more formal guarantee is given by Theorem 2. based on Ho-
effding’s inequality, where the probability of having a small error
estimation depends on the value of M and the number of points to
transform involved.

Theorem 2. If we have n points x1, ...,xn ∈ RN , and M ≥
4
ε2

log
(
n
2η

)
, then

P
(
∀xi,xj ,

∣∣∣〈HA,U (xi) , HA,U (xj)〉
− E (〈HA,U (xi) , HA,U (xj)〉)

∣∣∣ < ε
)
≥ 1− η.

This result gives a way to measure the quality on the approxi-
mation made by the hashes. In particular, if η and ε are fixed, the
number of components needed in the Hashing function depends on
the log of the number of points n that we want to transform. More-
over, note that the value ofM does not depend on the dimensionality
of the input data. Both facts may have important implications when
we work with high dimensional data.

2.2. One-bit Representation and Inference

As we have seen, the functionHA,U takes a real valued vector x and
outputs a vector with M components which its values can be either
− 1√

M
or 1√

M
. This means, that even thoughM may be smaller than

the original data dimension, the final representation of each hash
component is a float number.

However, we can redefine the hashing scheme and the operation
between the hashes in order to get the same approximation we have
already established. In fact, given a M × N matrix A and the M -
dimensional vector U , we can define

QA,U (x) = bAx+ Uc (mod 2).

In this case, the function QA,U outputs a vector with M compo-
nents, which its values can be either 0 or 1. Hence, each component
can be represented with just one bit. Therefore, after applying this
transformation, each vector will be mapped to a string with M bits.

In addition, it is quite straightforward to prove that the in-
ner product HA,U (x1) and HA,U (x2) can be recovered using
QA,U (x1) and QA,U (x2). Indeed, we have the next equation

〈HA,U (x1) , HA,U (x2)〉 =

1− 2

M

M∑
i=1

QA,U (x1)i ⊕QA,U (x2)i ,

where ⊕ is the XOR operation between bits. Thus, we can recover
the kernel approximation using the bit representation and the Ham-
ming distance between hashes. The natural cost is the cost of com-
puting the approximation using an inner product operation. Never-
theless, the Hamming distance computation is not expensive com-
pared to other kind of operations.

2.3. Hashing Trick - Hashing Applied to SVM

Commonly, SVM models are trained using its dual form that nat-
urally leads to the kernel trick. In fact, its dual form only de-
pends on the inner product between pairs of input vectors. Thus,
in order to find non-linear decision boundaries, we try to find a
linear boundary in a higher dimensional space mapping the input
data using some function φ. Hence, instead of working directly
with 〈φ(x), φ(y)〉, the kernel trick defines a function K such that
K(x,y) = 〈φ(x), φ(y)〉. Thus, we can work in a higher dimen-
sional space without an explicit mapping.

The kernel trick implies the computation of the Kernel matrix
using the input features and a non-linear kernel. However, such
computation scales poorly because its time and storage complexity
are quadratic in the dimensionality and number of the input features.
Hence, we can apply our hashing scheme to the SVM. First, we take
the input features and generate our hashes as described in the previ-
ous sections. Then, we use the hashes to compute the kernel matrix
with the inner product, which is a linear operation. This combination
approximates a non-linear Laplacian kernel SVM. Formally

K(x,y) = 〈φ(x), φ(y)〉 ≈ 〈H(x), H(y)〉 .

We can name this procedure Hashing Trick [22].

3. EXPERIMENTAL SETUP AND RESULTS

The section aims to show the benefits of using hashing plus a linear
SVM over the input features plus the non-linear SVM with Laplacian
kernel. The experiments are in the context of the DCASE Task 1 -
Acoustic Scene Classification [21]. The pipelines of the experiments
are also illustrated in Figure 3.

Fig. 3. The audio recordings are used to extract input features. Then,
these features are used to train an SVM in three different ways. One
is to pass the features directly to a non-linear SVM, second and third
are to compute random features [13] or hashes and pass them to a
linear SVM. Lastly, the trained SVM is used for classification.

3.1. Acoustic Scenes Data Set

For our experiments we used the “DCASE: TUT Acoustic Scenes
2017” development dataset [23]. It consists of recordings from vari-
ous acoustic scenes of 3-5 minutes long. The 15 acoustic scenes are:
Bus, Cafe / Restaurant, Car, City center, Forest path, Grocery store,
Home, Lakeside beach, Library, Metro station, Office, Residential
area, Train, Tram, Urban park.

3.2. Audio Feature Extraction

We extracted the large set of audio features of 6,553 dimensional-
ity employed in [3, 6]. The set includes different features to extract
different relevant information from the acoustic scenes, which con-
sist of multiple sound sources. The set is extracted using the toolkit
openSMILE [24] with the configuration file emolarge.conf. The fea-
tures are divided in four categories: cepstral, spectral, energy re-
lated and voicing features, and are extracted every 10 ms from 25 ms
frames. Moreover, we included functionals, such as mean, standard
deviation, percentiles and quartiles, linear regression functionals, or
local minima/maxima.

3.3. Acoustic Scene Classification

First, we evaluate the input features using the non-linear SVM with
the Laplacian kernel and then with the Series kernel. Then, we eval-
uate the hashes with a linear SVM to approximate the baselines.
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Method \ γ 2−12 2−14 2−16 2−18 2−20

Laplacian Kernel 71.21 77.91 78.64 78.51 78.51
Series Kernel 70.30 77.10 78.30 78.49 78.55
Hash (M = 26) 19.80 40.59 37.75 23.71 13.00
Hash (M = 28) 31.28 53.95 50.96 44.00 28.94
Hash (M = 210) 49.85 68.44 66.28 58.11 46.95
Hash (M = 212) 64.45 74.86 75.18 70.51 64.92
Hash (M = 214) 68.57 76.06 76.31 75.93 72.90
Hash (M = 216) 69.70 76.72 77.55 77.38 76.21

Table 1. Accuracy performance (%) as γ varies for the Laplacian
kernel (with input features), Series kernel (with input features) and
different hashing dimensionality M in bits (with linear SVM). The
best results for each type are in bold. Note how as the value of M
increases the performance is better approximated, but the dimension-
ality increases.

Lastly, we include from our previous work [13] the random features
with a linear SVM to approximate the Laplacian kernel.

We trained SVM classifiers with a one-vs-all setup and tuned the
γ parameter. For each experiment we used the feature vectors of the
testing set to evaluate performance and measured it with accuracy.

3.3.1. Baseline

The baseline performance consisted of two experiments, the input
features using the SVM with Laplacian kernel and with Series ker-
nel. Even though we have shown how similar both kernels are, we
wanted to see how this holds in our ASC task. Hence, we used the
acoustic feature vectors of 6,553 components and trained SVMs for
each type of kernel.

3.3.2. Hashing

In the second set of experiments, we used our hashing scheme and
tried different hash sizes (M ) to compare against the baseline per-
formance. Hence, we used the training and testing acoustic feature
vectors of 6,553 dims to compute hashes. The size of the hashes was
varied from M = 26 to M = 216 bits. The hashes were used to
train the SVM with a linear kernel.

3.4. Results on Acoustic Scenes Classification

3.4.1. Baseline

The baseline accuracy results for both kernel types, Laplacian and
Series, performed similarly as we expected and depending on the
value of the parameter γ the variation between both kernels was
closed. Also, note that the variation of γ affected the range of per-
formance of both kernels. First, the Laplacian Kernel had a range
of 71.21% (γ = 2−12) to 78.64% (γ = 2−16). Second, the Series
Kernel had a range of 70.30% (γ = 2−12) to 78.55% (γ = 2−20).
Details of these results are presented in Table 1.

3.4.2. Hashing

The accuracy results of the hashes improved as the sizeM increased
to a number close to the baselines. Similar to the baseline experi-
ments, the performance varied depending on the value of the param-
eter γ. For the best performing hash and largest size (216) the range
was 69.70% (γ = 2−12) to 77.55% (γ = 2−16), as Table 1 shows.

4. DISCUSSION
We discuss the different methods considered in this paper and in the
related work. Particularly, in Table 2 we include the official DCASE

Method Accuracy # of Bits
DCASE Challenge [21] 74.8% -
Series Kernel 78.5% > 218

Laplacian Kernel 78.6% > 218

Random features M = 212 [13] 75.8% 218

Hashing M = 216 77.5% 216

Hashing M = 212 75.2% 212

Table 2. The performance of the hashing scheme outperforms the
reported Challenge score and the random features. Moreover, per-
formance is comparable to using the Laplacian Kernel, however with
the benefits of reducing the bit representation by 4 times.

performance based on a Multilayer Perceptron, our baselines, our
hashing scheme and the random features [13].

First, we can see that the difference between the Laplacian and
the Series Kernel is minimal. Even though both have different ex-
pressions, in practice the performance is similar and hence, support-
ing the validity of the hashing approximation. In addition, we can
see that after applying the hashing technique we have a minimal loss
of performance with the advantage of working with a linear problem
instead of a non-linear quadratic one.

The most significant findings are related to the size of the output
obtained from our hashing function. In this experiment, each input
sample is represented by a vector of 6,553 components, which is
more than 218 bits if each component is represented by 8 bytes. In
contrast, to achieve similar results with our hashing technique, we
need 216 bits, that is, 4 times reduction in size. Hence, this method
not only change a nonlinear problem to a liner one, but also reduces
the dimensionality of the feature vector.

A similar technique, random features [13], employs 212 compo-
nents, which allowed us to approximate the Laplacian kernel with an
accuracy of 75.8%. Even though the dimensionality of the random
features was 3 times lower than the original vector, each random
feature used 218 bits if each component is represented by 8 bytes.
In contrast, using the hashing technique, with 214 bits we obtain a
performance of 76.31%. Hence, we can reduce the size of the final
representation by 16 times and obtain comparable results. Actually,
with a small loss of performance, we may use hashes with 212 bits
and obtain an accuracy of 75.18%, reducing the size of the final rep-
resentation by 64 times or 6 powers of two.

Our hashing has several potential applications for acoustic
scenes and sound events. For instance, reduce the struggle of mobile
devices with larger datasets and larger size of embeddings from neu-
ral networks. Another example is related to cloud computing and
privacy. If we need to process sensitive information in the cloud, we
can apply our hashing technique keeping the parameters A and U
private. Thus, we can still process ans classify the hashed record-
ings in the cloud because the hashing hides the information without
revealing the actual content.

5. CONCLUSIONS
In this paper we have presented a hashing scheme that allows us to
approximate the Laplacian kernel between features through the inner
product between hashes. Our main contribution was to show the the-
oretical guarantees to validate this approximation. We studied this
scheme with SVMs for Acoustic Scene Classification. The hashing
provides minimal degradation of performance, as well as employs
binary representation, reducing up to six powers of two the storage.
This has significant implications in the big data context, where high
dimensional features and large datasets must be processed.
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