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ABSTRACT
Sound event detection (SED) in real life is an interesting but
challenging task due to the polyphonic and long-term depen-
dent nature of sound events. Recently, multi-label recurrent
neural networks (RNNs) have shown promises. However,
even equipped with long short-term memory (LSTM) or gated
recurrent unit (GRU) cells, RNNs are still limited to model
the long-term dependency. In this paper, we propose a multi-
scale RNN to address this issue. By integrating informa-
tion from different time resolutions, we can better capture
both the fine-grained and long-term dependencies of sound
events. We experiment on the development sets of Task3 of
DCASE2016 and DCASE2017. Compared to our previously
proposed single-scale RNN that won the third place among
the 13 teams in Task3 of DCASE2017, the proposed multi-
scale model achieves statistically significantly better perfor-
mance on the development datasets of both DECASE2016
and DCASE2017.

Index Terms— Multi-scale model, deep learning, recur-
rent neural network, sound event detection

1. INTRODUCTION

Sound event detection (SED), i.e., the automatic detection
of environmental sounds and their temporal boundaries, has
been increasingly popular in recent years because of its wide
applications in machine hearing, scene understanding and
surveillance. Sounds convey important information about
our surroundings, and supplement information obtained from
other modalities such as cameras and motion sensors [1].

There are several challenges in SED. First, environmental
sound scenes are naturally polyphonic since sound sources are
rarely heard in isolation in everyday life [2]. The concurrency
of multiple sound sources (i.e., polyphony) enriches diversity
of the acoustic scene, and makes the detection more difficult
than that in monophonic sound recordings [3]. How to de-
sign richer models to capture this diversity is one challenge.
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Second, temporal dependency is a key discriminative aspect
of sound events. There are generally two types of temporal
dependencies: fine-grained and long-term dependency. Fine-
grained dependency is at the scale of miliseconds and captures
the subtle fluctuation of the frequency content. Long-term de-
pendency is at a coarser scale and its length depends on the
nature and length of the event, it is typically at the scale of
seconds [4]. To model the fine-grained dependency, one typ-
ically uses a frame length and hop size at the scale of tens
of miliseconds, but this means that the long-term dependency
would cover hundreds of frames, which is difficult to model.
One naive approach is to use a longer frame length and hop
size, but this would miss the fine-grained dependency. How to
model the long-term dependency without sacrificing the fine-
grained dependency is another challenge.

Early systems for SED include hidden Markov models
(HMMs) [2] and non-negative matrix factorization (NMF) [5].
Recently, recurrent neural networks (RNNs) equipped with
long short-term memory (LSTM) cells [3] and convolutional
neural networks (CNNs) [6] are adopted and have outper-
formed early systems. However, their capability for modeling
the long-term dependency is still quite limited: the maxi-
mum length of dependency that LSTM can well capture is
between 30 and 80 [7], one order of magnitude smaller than
the long-term dependency typically spans in sound events.

One way to model the long-term dependency without
sacrificing the fine-grained dependency is to use multi-scale
models: different levels of the multi-scale structure model
the data sequence at different time scales [8]. Multi-scale
models have been adopted for music auto-tagging [9] and
music emotion prediction [10]. However, these tasks only
require a single prediction for a given audio recording. In
the SED task, we need to continuously output labels in each
audio frame, based on which the temporal boundaries of the
overlapping sound events are estimated.

In this paper, we propose a multi-scale RNN to balance
the modeling of both the fine-grained and long-term depen-
dency: it uses one bidirectional RNN to model the audio in-
put at the resolution of 0.02 seconds (audio frame hop size)
with a time span of 0.5 seconds, and uses another bidirectional
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Fig. 1. Multi-scale RNN: RNNs on both fine- and coarse- scale are shown as rectangles. Circles in the middle represent
concatenation operations while squares indicate the final single-layer fully connected network for sound event prediction on the
fine-scale. Input fine-scale sequence has a length of 125 and coarse-scale with 25. During computation, the fine-scale sequence
is split into five subsequences to feed into five fine-scale RNNs respectively.

RNN to model the input at the resolution of 0.1 seconds with a
time span of 2.5 seconds. Both RNNs process sequences with
a length of 25 steps, but with different resolutions and time
spans. Outputs of the RNNs are concatenated at the frame
level and then passed through a fully connected network to
predict sound events. Compared to the traditional single-scale
RNNs, this multi-scale architecture reduces the length of se-
quences over which the RNNs must reason to model long-
term dependency. We further improve the performance of the
proposed multi-scale RNN model by data augmentation [11]
and ensemble learning. We experiment on the development
sets of Task 3 of DCASE2016 and DCASE2017 following the
official setup [12, 13]. Compared to a state-of-the-art single-
scale RNN, which won the third place among the 13 teams in
DCASE2017 Task 3, our proposed multi-scale RNN reduces
the error rate by a significant amount on the development set.

2. METHOD

2.1. The Proposed Multi-Scale RNN

We propose a multi-scale RNN to better model the temporal
dependencies of sound events: it comprises two RNNs which
separately work at the fine-scale (f-RNN) and the coarse-scale
(c-RNN). Both RNNs are bidirectional to exploit the contex-
tual information from both time directions. Both RNNs con-
tain multiple layers, where the output of the previous recur-
rent layer is fed as input to the next recurrent layer and the last
recurrent layer is used to make the prediction. The two RNNs
are aligned so that each cell of the c-RNN interacts with five
cells of the f-RNN. Our model is shown in Fig. 1.

Suppose we are given a sequence of fine- and coarse-scale
input vectors: {xt} and {XT }. The f-RNN hasN1 layers and
its hidden activations at the n-th layer for both directions are
denoted as {
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h t
n}, {

←−
h t
n}, respectively. Similarly, the c-RNN

has N2 layers and the hidden activations at the n-layer for
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recurrent layer, the recurrent process can be described as:
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where t = 5(T − 1) + i for i ∈ {1, 2, 3, 4, 5}. For the first
recurrent layer (i.e., when n = 1), [

−→
h t
n−1,

←−
h t
n−1] is replaced

by xt, and [
−→
HT
n−1,

←−
HT
n−1] is replaced by XT .

Final probabilistic predictions {yt} are made at the fine-
scale: at each fine-scale time step, we replicate the hidden
states of the associated c-RNN cell and concatenate it with
the hidden state of f-RNN cell, then pass it through a fully
connected layer with sigmoid output as the following :

yt = σ(W[
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h t
N1
,
←−
h t
N1
,
−→
H
d t
5 e
N2

,
←−
H
d t
5 e
N2

] + b), (2)

where yt ∈ [0, 1]L, L is the number of all sound events, σ(·)
is an element-wise sigmoid function, and d·e the ceiling oper-
ation. W ∈ RL×2(df+dc) and b ∈ RL, where df and dc are
the hidden sizes of f-RNN and c-RNN, respectively.

The training process of our proposed multi-scale RNN
contains two stages: in the first stage, we train f-RNN and
c-RNN separately with a sequence length of 25 and a hop
size of 5. Their recurrent process are the same with ( 1), but
the output is slightly different:

ytf = σ(Wf [
−→
h t
N1
,
←−
h t
N1

] + bf )

yTc = σ(Wc[
−→
HT
N2
,
←−
HT
N2

] + bc), (3)

where Wf ∈ RL×2df , bf ∈ RL and Wc ∈ RL×2dc ,
bc ∈ RL. During the second training stage, we feed the
coarse-scale sequence with length of 25 and fine-scale with
length of 125 simultaneously to the multi-scale RNN. We
fix the parameters of both RNNs trained in stage 1, discard
[Wf ,bf ,Wc,bc] and train W, b in ( 2) from scratch. We

132



constrain all sequences to the length of 25 to alleviate the gra-
dient vanishing problem. Both training stages are supervised
by minimizing the binary cross entropy (BCE) loss:

loss(yt, ŷt) = − 1

L

L∑
i=1

[ŷti log(yti) + (1− ŷti)log(1− yti)], (4)

where ŷt ∈ {0, 1}L is sound events’ ground-truth labels.
Note that RNNs in our model can be equipped with LSTM
or GRU, which will be discussed in the experimental setup.

2.2. Feature Extraction

We re-sample all files to 44.1 kHz and extract three sets of fea-
tures (timbre, pitch, and TDOA) at two scales with hop sizes
of 20 ms and 100 ms, denoted as the fine-scale and coarse-
scale, respectively. For stereo recordings, timbre and pitch
features are extracted on the average of the two channels.

Timbre Features: The first set of features are the log
mel-spectrogram (lms) and mel-frequency cepstral coeffi-
cients (mfcc) [3, 14]. We first apply Hann window and
STFT with a window length of 40 ms for the fine-scale and
93 ms for the coarse-scale. Then, we apply 40-band mel-
scale triangular filters ranging from 0 to 22,050 Hz to obtain
the 40-d lms feature. We transform the lms to the cepstral
domain to extract the first 20-d mfcc features and their first-
and second-order derivatives with respect to time. We discard
the first dimension ofmfcc, resulting in a 59-dmfcc feature.

Pitch Features: We detect the three most dominant fre-
quencies within 100-4000 Hz at each scale, after taking STFT
with window lengths of 46 ms (fine-scale) and 93 ms (coarse-
scale), respectively [15]. Together with the corresponding
periods, we extract a 6-d feature (denoted as pitch3) at each
scale. We also extract a 2-d feature (denoted as pitch) by only
keeping the single most dominant frequency and its period.
These dominant frequencies are not necessarily fundamental
frequencies (pitches); we use the name pitch for simplicity.

TDOA Features: The time difference of arrival (TDOA)
at time t is defined as the time delay ∆ that maximizes the
correlation between the two channels at each mel-band [15]:

Rb(∆, t) =

N−1∑
k=0

Hb(k)
X1(k, t)X∗2 (k, t)

|X1(k, t)||X2(k, t)|
ei2πk∆/N , (5)

where Hb(k) is the magnitude frequency response of the b-
th mel-band filter, X(k, t) is the complex Fourier spectrum
at frequency k and time t, ∗ is the conjugate operation, and
N is the total number of frequency bins. We use five mel-
bands (B = 5) ranging from 0 to 22,050 Hz and calculate
FFT with three window lengths - 120, 240 and 480 ms for the
fine-scale and 240, 360 and 600 ms for the coarse-scale. This
results in a 15-d feature (tdoa3) at each scale. For each mel-
band, we further take the median value of the TDOA from the
three window lengths for noise reduction. This results in a
5-d feature (tdoa) at each scale.

We search for the best feature combinations to use for f-
RNN and c-RNN independently. To do so, we treat each RNN
as a stand-alone SED model and train and evaluate it for each
feature combination for 10 times. We choose the combination
that achieves the lowest error rate (ER) on the validation set.
For DCASE2017, the best combination is mfcc+ pitch3 for
f-RNN and mfcc + pitch for c-RNN. For DCASE2016, the
best is lms + pitch + tdoa for f-RNN and mfcc + pitch3
for c-RNN, where the lms and pitch features for f-RNN are
concatenations of the two channels instead of the average.

2.3. Data Augmentation and Ensemble

To address the issue of data scarcity, we augment the training
data with the union of “pitch shift” and “time stretch” defor-
mations [11]: for each recording, we tune the pitch by one
of the 14 semitones: {±0.5,±1,±1.5,±2,±2.5,±3,±3.5}
or change the speed by one of the 10 factors: {0.71, 0.76,
0.81, 0.87, 0.93, 1.07, 1.15, 1.23, 1.32, 1.41}. We also imple-
ment an ensemble technique: we train four models with the
same setting except that the validation datasets are randomly
selected from training set. During testing, frame-wise predic-
tions of the four models are averaged before post-processing.

3. EXPERIMENTS

3.1. Setup

We experiment on the development datasets of Task 3 of
DCASE2016 and DCASE2017 [4]. The DCASE2016 dataset
contains 22 recordings in home and residential area. The
home context has 10 recordings with 11 sound events while
the residential area context has 12 recordings with 7 sound
events. The DCASE2017 dataset consists of 24 recordings in
the street context with 6 types of sound events. All of the
recordings have a length of three to five minutes.

For DCASE2016, we use a two-layer bidirectional RNN
with GRU units (BGRU) for the fine-scale f-RNN and a one-
layer BGRU for the coarse-scale c-RNN. We set df = 32 and
dc = 32. For DCASE2017, we employ a single-layer BGRU
as the f-RNN and a two-layer bidirectional RNN with LSTM
units (BLSTM) as the c-RNN. We set df = 16 and dc = 64.
For both datasets, we set initial learning rate to 0.001 and
optimize the binary cross entropy loss with Adam [16]. We
use a fixed threshold of 0.5 on yt in ( 2) and ( 3) to indicate
the presence or absence of a sound event.

For both DCASE2016 and DCASE2017, we follow the
official 4-fold cross validation partition and report the error
rate (ER) on one-second segments [12] on all folds [13]. For
each rotation, 3 folds form our training and validation sets
with a ratio of 80:20. We train on the training set for 100
epochs and save the model that performs the best on the val-
idation set. During testing, we ensemble the four best mod-
els from the four cross validation rotations by averaging their
probability outputs. Finally, we binarize averaged output and
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Fig. 2. Error rates of different approaches. “Origin”: without
data augmentation or ensemble; “Aug”: with data augmenta-
tion; “Ensemble”: with data augmentation and ensemble.

post-process it by median filtering with a kernel size of 27
frames [14]. We test the ER results for statistical significance
using a paired student’s t-test at a significance level of 0.05.

3.2. Single-Scale vs. Multi-Scale

To show the effectiveness of the proposed multi-scale model,
we compare it with a state-of-the-art single-scale model that
we previously proposed, which won the third place among the
13 teams in Task 3 of DCASE2017. The single-scale model
is essentially the same as the fine-scale RNN of the proposed
multi-scale model, on both its structure and training process.
We use the best feature combination found in Section 2.2 for
the single-scale RNN and the multi-scale RNN as input.

For the DCASE2017 development dataset, we run each
experiment for 10 times and show error rates of different ap-
proaches as boxplots in Fig. 2. For both the single-scale (SS)
and multi-scale (MS) models, we observe obvious reductions
in error rates when data augmentation is applied. Moreover,
ensemble decreases error rates to a new level and makes the
predictions more stable (smaller variance). The final error rate
of our SS-RNN (“SS-ensemble” in Fig. 2) is 0.614 ± 0.003,
which exceeds the official baseline by over 11%. With the
proposed MS-RNN, we achieve an error rate of 0.604±0.001
(“MS-ensemble” in Fig. 2) which surpasses the baseline by
over 12.5%. The reduction on ER is statistically significant
with a p-value of 6.16× e−7 compared to the SS-RNN.

We exhibit error rates of the top 5 systems on both the
evaluation set and development set of DCASE2017 in Table
1. Since the evaluation dataset of DCASE2017 is not publicly
available, we cannot test the proposed MS-RNN on it. We be-
lieve that our model can achieve a lower ER on the evaluation
dataset due to its stable performance. It is worth to mention
that the top 2 systems [17, 18] achieve very low error rates on
the development dataset, while their evaluation performances
are quite similar to our SS-RNN model. The big gap between

Rank Methods Evaluation Development

1 Conv RNN [17] 0.791 0.25

2 Multi-Input CNN [18] 0.808 0.51

3 Our SS-RNN [19] 0.825 0.614± 0.003

4 LSTM [20] 0.853 0.66

5 CNN [21] 0.858 0.81

9 DCASE2017 Baseline 0.936 0.69

- Proposed MS-RNN − 0.604± 0.001

Table 1. Error rates (mean with standard deviation) compar-
ison of our proposed multi-scale (MS) RNN with the top 5
systems and the official baseline in Task3 of DCASE2017.

Methods ER F1 (%)

GMM [4] 0.91 23.7

FNN [14] 1.32± 0.06 32.5± 1.2

CRNN [6] 0.95± 0.02 30.3± 1.7

Our SS-RNN [19] 0.85± 0.01 32.1± 1.0

Proposed MS-RNN 0.82± 0.01 31.5± 0.8

Table 2. Comparison of our proposed multi-scale (MS) RNN
with four other deep models on the development dataset of
DCASE2016. All values are reported with mean and standard
deviation.

the evaluation and development set performances suggest se-
vere overfitting on the development set, making it hard to
compare with other systems on the development set.

For DCASE2016, we find that data augmentation leads to
worse performance. We thus only employ ensemble for our
final system. As shown in Table 2, we compare our SS-RNN
baseline and the proposed MS-RNN with several other deep
models on the development dataset of Task3 in DCASE2016.
Compared to SS-RNN, MS-RNN shows a statistically signif-
icant reduction on ER with a p-value of 6.5× e−6. Moreover,
MS-RNN outperforms other models by a large margin.

4. CONCLUSIONS

In this paper, we proposed a novel multi-scale RNN for sound
event detection (SED) in real life. By integrating information
from both time resolutions, we achieved lower error rates on
Task3 in DCASE2016 and DCASE2017. The effectiveness of
our proposed multi-scale model complies with the intuition
that the combination of models from different time resolu-
tions have the benefits of modeling both the fine-grained and
long-term dependencies. Future directions include a combi-
nation of multiple time resolutions in the multi-scale frame-
work to model even longer temporal dependencies. Another
direction is to address data scarcity issue in SED by designing
algorithms that can learn from weakly labeled datasets.
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