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ABSTRACT

We propose a music structure analysis method that converts a
path-enhanced self-similarity matrix (SSM) into a block-enhanced
SSM using non-negative matrix factor 2-D deconvolution (NMF2D).
With a non-negative constraint, the deconvolution intuitively cor-
responds to the repeated stripes in the path-enhanced SSM. Then
the block-enhanced SSM is constructed without any clustering tech-
nique. We fuse block-enhanced SSMs obtained using different pa-
rameters, resulting in better and more robust results. Discussion
shows that the proposed method can be a potential tool for analysing
music structure at different scales.

Index Terms— Music structure analysis, NMF 2D deconvolu-
tion, path-enhanced self-similarity matrix, fusion

1. INTRODUCTION

A self-similarity matrix (SSM) is an important mid-level representa-
tion for music structure analysis, which is generated by computing
frame-to-frame similarity. The repetition of segments typically leads
to diagonal stripes in the SSM [1]. The stripes can be emphasised in
the path-enhanced SSM by applying diagonal smoothing to the SSM
[2] or to the recurrence plot [3]. As shown in Figure 1, the stripe
patterns clearly illustrate the repetition of segments (e.g., verse or
chorus) and the repetition within a segment (e.g., the bridge in Fig-
ure 1). The stripes of the same group can be generated by shifting a
specific structure pattern. Based on this observation, we propose to
decompose the path-enhanced SSM into structure patterns (as shown
in Figure 2(a)) and shift activations corresponding to each pattern
using non-negative matrix factor 2-D deconvolution (NMF2D) [4].
We then construct a new, block-enhanced SSM by computing the
SSM of the normalised activations. In order to obtain a robust result,
we fuse block-enhanced SSMs obtained with different parameters.
Then we detect boundaries on the fused, block-enhanced SSM us-
ing a checkerboard kernel [5], and label the detected segments by
comparing each pair of segments.

Several previous methods decompose the SSM to analyse mu-
sic structures. Two methods, [6] and [7], apply non-negative matrix
factorisation (NMF) to SSMs by assuming that columns within the
same segment types have similar distributions. This assumption ap-
parently works better on block-enhanced SSMs. In practice, to be
effective, [6] only works on segment labelling by clustering NMF
activations, and [7] roughly estimates the main segments by perform-
ing low-rank convex-NMEF. In [8], the original SSM is decomposed
using symmetric NMF by considering the symmetry of the SSM.
Then the reconstruction of the symmetric NMF is taken as the block

This work was supported in part by JST ACCEL Grant Number JPM-
JAC1602, Japan.

978-1-5386-4658-8/18/$31.00 ©2018 IEEE

180 4
160
10| A A

120

ol |

0w w0 e w0 w0 0 10
(a) Smoothed recurrence plot and annotated boundaries
(in vertical lines)

Time [s]

(b) Annotations: introduction (I), bridge (B), verse (V),
chorus (C), bridge 1 (B1) and ending (E)

Fig. 1: An illustration of piece ‘RWC-MDB-P-2001 No.23’ in RWC
Pop Database [9].

structure of the SSM. [1] decomposes the path-enhanced SSM by
eigenvalue decompositions, obtaining different eigenvectors corre-
sponding to different stripe structures. The clustered eigenvectors
are used to compute an SSM in the form of a block structure. Then
NMF is used to decompose the block-enhanced SSM for labelling.

We consider our method to be most similar to [1]: both meth-
ods convert a path structure to a block structure. However, there
are several differences. First, we compute the block-enhanced SSM
without a clustering step because of the intuitive representation of
the NMF2D. Second, we fuse the block-enhanced SSMs obtained
using different parameter settings by taking the sum of them for a
more robust result. Third, we directly use the average value from
the block structure to indicate the similarity of two segments. Then
segment labelling is achieved by simple thresholding, without any
further post-processing steps. Our method may also be seen as a
stripe (i.e., sequence)-oriented version of [7], which used NMF to
decompose blocks (i.e., homogeneous segments) in SSMs. Focusing
on stripes vs. blocks reflects two different interpretations of musical
structure, and it is important to be able to analyse both.

The proposed method is evaluated using the RWC Pop Database
[9], and compares favourably to some released results on the same
database in the Music Information Retrieval Evaluation eXchange
(MIREX) campaign.! Results show that the proposed method is
among the top of the state-of-the-art.

"http://www.music—ir.org/mirex/wiki/MIREX_HOME

ICASSP 2018



2. METHOD

2.1. Generating the path-enhanced SSM

To generate a path-enhanced SSM, we adopt the method of comput-
ing recurrence plots in [3].> Firstly, we compute Harmonic Pitch
Class Profile (HPCP) features [10] with 12 pitch classes, a window
length of 743 ms and a hop size of 372 ms. Then we concatenate
HPCP features of M adjacent frames to construct a new feature. We
zero-pad the beginning and end of the HPCP features to keep the
indices of new features the same as those of the original HPCP fea-
tures. The concatenated features are denoted by X = [x1,...,Xn],
where x;, fori = 1, ..., N, is a column vector with the dimension of
12 x M, and N is the total number of feature frames.

Next, we compute the distance (the Euclidean norm) for each
pair of frames. The recurrence plot R is obtained as follows. For
each frame x;, ¢ = 1, ..., IV, we search for its K nearest neighbours
inx;, 5 = 1,...,N. If x; is a neighbour of x;, and x; is also a
neighbour of x;, we set R; ; = 1. K is set according to the frame
length N by K = kN, where k € (0, 1].

We convolve the recurrence plot with a diagonal matrix covering
6 s to smooth the stripes and to eliminate short lines. The diagonal
value of the matrix is a Gaussian function with a standard deviation
of 3 s. A smoothed recurrence plot is shown in Figure 1(a).

2.2. Deconvolution of the path-enhanced SSM

In an NMF2D model, a pattern is convolved in both the x-axis and
y-axis [4]. As shown in Figure 1, the columns within a repeated seg-
ment can be generated from a single column’s pattern shifted along
both the z- and y-axes. So we apply NMF2D to the smoothed re-
currence plot to separate frames of different groups. The smoothed
recurrence plot R is modelled as:

~
~

M
T 2

Each column Wy (1 < d < D) in Figure 2(a) represents a structure
pattern, and its shifting activation Hy € R®™*Y is shown in the
corresponding sub-figure in Figure 2(b), where ®,,, is the range of
vertical shifting. We assume that the number of labels in a song is not
larger than 10 (D = 10), and the length of a segment is not longer
than 30 seconds (P, equal to 30 seconds). Because the patterns are
vectors, there is no need for horizontal shifting in this approach; the
horizontal shift variable 7 is thus set to 0. We use the implementation
of [4]® with a sparsity weight A = 2 to enforce sparsity on H. For
parameters not mentioned, we kept the default values.*

For the active frames in Hg, their structures in R are shifted
from the same structure pattern Wy. Thus we sum H, to indicate
the frames corresponding to the structure pattern Wy: HI4(n) =
> Ha(®,n). Then we normalise HI4 to a maximum of 1 and
smooth it using a 6-second window. The normalised activation NH
is shown in Figure 2(c).

2.3. Generating the block-enhanced SSM

The structure patterns obtained via NMF2D are not guaranteed to
correspond one to one to the structural groups. It is clear in Fig-
ure 2(c) that 3 patterns (W7, Wy and W) correspond to the bridge

2Using SSM in [3] outperforms SSM in [2] in preliminary experiments.

3http://www2.imm.dtu.dk/pubdb/views/publication_
details.php?id=4499

It takes around 9 seconds to converge for a song of 200 seconds on a 2.8
GHz Intel Core i7 computer.
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Fig. 2: The process of computing the block-enhanced SSM.

part; 2 patterns (W2 and W) correspond to the verse part; 3 patterns
(W3, W4 and W3) correspond to the chorus part; and patterns W
and W correspond to the introduction and the ending parts, respec-
tively. Bridge 1 is not represented by any pattern.

Despite that, the active frames of patterns with the same label
are more correlated than those of other patterns. Hence these frames
have more similar distributions in NH. Based on this observation,
we directly compute the SSM of NH to form a block-enhanced
SSM, as shown in Figure 2(d).

2.4. A simple fusion

Because of the random initialisation of the NMF2D, the deconvolu-
tion is different every time. In order to obtain more robust results,
we run NMF2D 8§ times with different parameters. When generat-
ing the recurrence plot in Section 2.1, we group M € {5,6,7,8}
frames and search for the top 2 or 3 percent nearest neighbours
(k € {0.02,0.03}). To fuse the block-enhanced SSMs obtained
from the 8 parameter sets [M, k], we simply take their sum [11].
The preliminary test shows that the fusion step improves the results
by over 6 percentage points on boundary detection in comparison to
the result of each parameter set. Besides making the results more
robust, the fused SSM keeps boundaries obtained in different block-
enhanced SSMs. If a boundary is detected in more SSMs, it is easier
to detect in the fused SSM, and more likely to be a true boundary.

2.5. Boundary detection and labelling

After obtaining the fused block-enhanced SSM, we normalise it to a
maximum of 1, denoted by M g. We apply a checkerboard kernel [5]
to Mp to generate a novelty curve. All peaks in the novelty curve
are detected as boundaries. We add two other boundaries at the first
and last frames. The fused SSM and detected boundaries are shown
in Figure 3(a) and (b) respectively.
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Fig. 3: Boundary detection and labelling based on the block-
enhanced SSM.

Having detected the boundaries, we compute the similarity of
each pair of segments. The similarity is indicated by the average
value of the block-enhanced SSM Mpg. Given L detected bound-
aries, we have L-1 segments. The similarity between the i* and 5"
segments is computed as follows:

1
i-zig E Mgp(I;, 1), i,5=1,...,.L—1. (2
Si,;j N; X Nj s B( ), 4,3 (2

Where, (I;, I;) indicates the frame indices in the ‘" and j** seg-
ments, with lengths of N; and N;, respectively. The similarity of
each segment to itself is forced to be S; ; = 1. The similarity of the
detected segments is shown in Figure 3(c). If the similarity value is
larger than a threshold (0.5 in this paper), the pair of segments are
detected as the same group. We enforce transitivity generously: if
A and B belong to the same group, and A and C belong to the same
group, then all A, B and C belong to the same group.

3. EXPERIMENT

3.1. Evaluation metrics and database

Two subtasks of music structure analysis are evaluated here: bound-
ary detection and labelling. A boundary is considered to be correct
if it lies within 43 s from a ground truth boundary [12]. We report
boundary detection results of F-measure (F'g), precision (Pg) and
recall (Rp). Labelling is evaluated in 0.1 s frames, with pairwise
F-measure (F7,), precision (Pr) and recall (Ry).
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We test the proposed method on the RWC Pop Database [9].
Two different annotations of this database are available, indicated
by ‘RWC-POP-A"> and ‘RWC-POP-B’¢ respectively. We use both
annotations to evaluate the proposed method for boundary detection
and labelling.

3.2. Results

Among the results obtained by using checkerboards of different
lengths, the best boundary detection result is achieved by the 2 x 14-
second (28-second) checkerboard.” As shown in Table 1(a), for the
RWC-POP-A annotations the proposed method achieves F-measure
of 73.6% and 63.7% for boundary detection and labelling, respec-
tively. For comparison, we select the 4 results published in MIREX
from 2012 to 2017 with a boundary detection F-measure above
67% or a labelling F-measure above 60% (this ignores 33 com-
petitors with lower scores). The SMGA method [3] achieved the
best F-measure on both boundary detection (78.5%) and labelling
(68%); see Table 1(a)). The proposed method has the second best F-
measures, outperforming the rest of the methods on both tasks. Both
the proposed and SMGA methods are based on the same recurrence
plot. In Section 4, we discuss these two methods in detail.

Using the RWC-POP-B annotations (see Table 1(b)), SMGA [3]
still has the best boundary detection F-measure of 79.7%, followed
by GS1 and GS3 with F-measures of 79.3% and 72.9%, respectively.
Both GS methods [13] train a Convolutional Neural Network (CNN)
on the combined self-similarity lag matrix (of two different lags).
The trained model works as a binary classifier to detect boundaries
in a moving window. The proposed method achieves an F-measure
of 72.1%, better than the other two methods (NB2 [14] and FK2
[15]) by 2.1 and 6.3 points, respectively.

In the RWC-POP-B annotations, the silent parts at the beginning
and end of the music pieces are annotated as separate segments. This
means that 4 correct boundaries can be detected only by detecting the
silent parts. The results show that the improvement of 6.4 percentage
points from GS3 to GS1 is achieved by identifying the silent seg-
ments. We do not think these boundaries are as important as others.
In addition, the results may be biased, considering the high ratio of
the number of silence-related boundaries to all boundaries. Thus, we
also report the boundary detection results when ignoring all bound-
aries in the first 5 seconds and last 5 seconds [16] for the proposed
and GS methods. The proposed method achieves 70.6% and 71.7%
on F-measure with two annotations, respectively.® The F-measures
of the GS method [13] are 70.9% and 75.2%, respectively, with no
difference between GS1 and GS3.

The labelling F-measure of the proposed method is as high as
73.5% in Table 1(b). However, MIREX does not yet publish results
with the RWC-POP-B labels, which were updated in 2014, so we
cannot directly compare our work. Our results can serve as a baseline
for future research.

4. DISCUSSION

When we inspected errors made by our algorithm, we found it was
usually not due to poor modelling of the stripes, but a mismatch be-

Shttps://staff.aist.go.jp/m.goto/RWC-MDB/
AIST-Annotation/

Shttp://musicdata.gforge.inria.fr. We use the reduced
version of the annotation.

TTesting a reasonable range of checkerboard sizes (between 22 s to 30 s),
the variance of the F-measures is less than 1 percentage.

8The smoothness in Section 2.2 reduces false alarms but blurs the bound-
aries. The F'ps (within 0.5 s) of the proposed method are less than 25%.



Method ‘ Fp Pp Rp ‘ Fr, Py, Ry,
Proposed (no fusion) | 67.5 723 649 | 599 80.2 494
Proposed 73.6 802 693 | 63.7 812 543
SMGA® [3] 785 81.7 773 | 68.0 728 66.5
GS1 (2015) [13] 715 80.6 656|542 779 431
GS3 (2015) [13] 73.6 894 640 | 542 779 43.1
NB2 (2014) [14] 703 76.6 669 | 555 525 61.7
FK2 (2013) [15] 657 816 56 | 635 79.6 612
Proposed 2 706 79.8 64.9
GS—% (2015) [13] 709 88.6 61.0
(a) Results in percentage with RWC-POP-A
Method ‘ Fp Py Rp ‘ Fr, Pr, Ry,
Proposed (no fusion) | 65.6 71.7 61.8 | 68.0 77.7 63.5
Proposed 72.1 802 66.6 | 73.5 799 70.7
SMGA® [3] 79.7 827 782
GS1 (2015) [13] 793 919 71.1
GS3 (2015) [13] 729 909 62.1
NB2 (2014) [14] 70.0 78.1 64.6
FK2 (2013) [15] 658 84.1 552
Proposed 2 717 769 69.0
GS—5 (2015) [13] 752 894 672

(b) Results in percentage with RWC-POP-B

Table 1: Results with different annotations. Superscript * denotes
results quoted from [3]. Superscript ~° denotes boundary detection
results by ignoring boundaries in the first and last 5 seconds.

tween our hypothesis and the song being analysed: the stripes that
exist are found reliably, but they can be insufficient to model the
structure. Methods based on path-enhanced SSMs (including [1, 3]
and the proposed method) are sensitive to repetitions between seg-
ments and within segments. We illustrate this with two examples.

In Figure 4(a), we show two typical path-enhanced SSMs corre-
sponding to segment sequences labelled ‘ABCAB’, but in the right
example, segment ‘A’ consists of repeating sub-segments ‘aa’. The
simulated results of SMGA [3] and the proposed method are shown
in Figure 4(b) and (c). We can see that in the first case ‘ABCAB’,
both methods miss the boundaries between A and B; if both A and
B are through-composed, this boundary is, in a sense, undiscover-
able, and might only be found when considering musical novelty or
homogeneity, or segment size uniformity.

In the second case ‘aaBCaaB’, both methods find the boundaries
between A and B. SMGA also detects the boundary internal to ‘aa’,
and this boundary is more noticeable than the one between A and
B, whereas our method recognizes both as belonging to the same
“repetition type”. So, despite the gap in performance, we still rec-
ognize the special ability of our NMF2D approach to resolve intra-
segment repetitions as being a kind of “homogeneously repetitive”
state, which we hope to exploit better in future work.

Of course, there may be disagreement on the ground truth
whether ‘aa’ should be labelled as one segment or two segments. So
beyond this evaluation, we would like to provide meaningful repre-
sentations for analysing music structure at different scales, such as
in [17], [18] and the SALAMI database’. NMF2D shows promise as
a multi-scale music structure analyser. In this paper, we find frames
of the same group based on the summed shift activations. Then
within the group, the repetition is clearly indicated by the diagonal
stripes in the shift activations as shown in Figure 4(c) and also in the

http://ddmal.music.mcgill.ca/research/salami.
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Fig. 4: Two examples: Left, ‘ABCAB’, right, ‘aaBCaaB’.

real example in Figure2(b).

Among the MIREX algorithms omitted from Table 1(b) are ver-
sions of [6] and [7], two NMF approaches directed at blocks in-
stead of stripes. By targeting sequences instead of homogeneity, we
improve F-measure from below 67 to 72.1, closer to the state-of-
the-art performance of SMGA (F-measure = 79.7). We also found,
like [11], that a simple late fusion approach led to increased robust-
ness: both precision and recall increased in a balanced way to im-
prove F-measure by 7 points. Based on these observations, we spec-
ulate that by fusing non-negative factorisation models of stripes and
blocks, performance may improve even more.

5. CONCLUSION AND FUTURE WORK

In order to analyse music structure, we propose to deconvolve a path-
enhanced SSM using NMF2D and generate a block-enhanced SSM
based on the summed activations. We fuse block-enhanced SSMs
obtained with different parameters. The analysis of the decomposi-
tion results shows that the summed activations intuitively separate
frames belonging to different labels. The fusion step makes the re-
sults less sensitive to the parameters of computing the path-enhanced
SSM, and also improves the performance.

The proposed method sums the shift activations to indicate the
frames of the same pattern. However, the stripes in the original shift
activations can be potentially used to detect the repeated segments of
the same label, providing an analysis at a different scale. Exploiting
this remains a task for future work. We are also interested in the
performance of the proposed method on other databases, especially
the SALAMI database with different annotation scales.
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