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ABSTRACT

So far, few cover song identification systems that utilize index
techniques achieve great success. In this paper, we propose a
novel approach based on skipping bigrams that could be used
for effective index. By applying Vector Quantization, our
algorithm encodes signals into code sequences. Then, the bi-
gram histograms of code sequences are used to represent the
original recordings and measure their similarities. Through
Vector Quantization and skipping bigrams, our model shows
great robustness against speed and structure variations in
cover songs. Experimental results demonstrate that our model
achieves better performance than recent methods and is less
computationally demanding.

Index Terms— Cover song identification, skipping bi-
grams, Vector Quantization, inverted index

1. INTRODUCTION

Cover song identification is defined as that given a query, the
system retrieves all cover renditions that belong to the same
song. Audio fingerprinting [1], a technique retrieving an exact
copy of a query, cannot be directly applied to this task since
great variations such as timbre, tempo and tonality often exist
on cover songs.

So far, widespread approaches like Dynamic Program-
ming (DP) or Dynamic Time Warp (DTW) find the optimal
matches between queries and cover versions in the database.
For example, Ellis and Poliner [2] used DP to extract Beat-
chroma features and cross-correlated the representation for
sharp peaks indicating local optimal matches. Foote [3] ap-
plied DTW to spectral energy features to quantify the sim-
ilarity between two music pieces. Gómez and Herrera [4]
proposed a DTW approach using chroma features. Similarly,
Serrà et al. [5] utilized Qmax, a sophisticated DP method, for
cover song identification and won Mirex Audio Cover Song
Identification contests from 2007 to 2009.

Indeed, these approaches achieve high accuracies when
applied to small-scale databases. However, they become
time-consuming on large-scale databases. Given a dataset
with N recordings with a mean length of M , they require the
computation of O(NM2) for each query. To address such
difficulty, one intuitive solution is to reduce the complexity

of comparison O(M2) and compensate for time used for it-
eration. Serrà et al. [6] modeled cover songs with temporal
model. Bertin-Mahieux and Ellis [7] applied two-dimension
Fourier transform to Beat-chroma features and obtained low-
dimensional vectors for calculating similarities. Humphrey
et al. [8] projected 2D Fourier Magnitude into very sparse
space and applied supervised learning to cover song retrieval.
Foster et al. [9] considered an information-theoretic approach
to measure the similarity among tracks. These works reduce
O(NM2) to O(NM), but they still have to iterate the whole
music collection.

Some scholars attempt to avoid exhaustive iteration
through index techniques. In [10], a hash index was con-
structed to perform efficient retrieval in classical music
databases. Casey et al. [11] split songs into chunks, and
Local Sensitive Hash (LSH) was built to speed up recognition
in remix music set. Yu et al. [12] employed a two-level LSH
on a multi-variant audio database. Indeed, these works show
enormous potential of index techniques in music retrieval.
However, these systems aim at small variations in signals
and cannot directly be applied to cover song identification.
In [13], the authors utilized hashed landmarks to cover song
identification but did not achieve good results. To the best
of our knowledge, there are still few successful index ap-
proaches used for cover song identification until now. More
sophisticated and specific retrieval systems should be studied
and adapted to this task.

In this paper, we propose a new retrieval approach based
on skipping bigrams robust against musical variations. When
retrieving cover songs, our model adopts inverted index for
acceleration. With skipping bigrams and an effective index,
our approach achieves good performances with relatively low
time complexity. Our work extends traditional music retrieval
framework into cover song identification. Originally, [14]
proposed a N-gram model for folk music retrieval. In our
work, we utilize skipping bigrams and Vector Quantization
to reduce effects of speed and structure variations in cover
songs. Indeed, Vector Quantization and clustering methods
were well explored in Music Information Retrieval [15, 16],
but these works did not focus on cover song identification.
Even though Vector Quantization is a classical technique, we
surprisingly find that it shows great robustness in this task.
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Fig. 1. Overview of the approach. There are N recordings in the dataset, and 11 transposed CENS sequences are generated for
each query.
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Fig. 2. Visualization of code sequences for two versions of
”Dancing Queen” and one version of ”Rolling in the Deep”.
We regard the codes as numbers and draw the curve through
time.

2. APPROACH

As shown in Figure 1, chroma is extracted from audio. Then,
chroma sequences are embedded and transformed into code
sequences, which are counted to establish bigram histograms
and measure the similarity. Besides, inverted hashes are uti-
lized for acceleration.

2.1. Feature extraction

Chroma Energy Normalized Statistics (CENS), a kind of
enhanced chroma feature, represents the intensity of twelve
pitch classes of music [17]. It shows promising applications
in recent research [18, 19]. In our case, we use Chroma
Toolbox [20] to extract CENS. Under the default setting, we
obtain a sequence of 12-dimensional vectors—2 vectors per
second, each vector corresponding to 2100ms.

In CENS descriptor, circular shifts are used to repre-
sent key transpositions, which are common changes in cover
songs. Given a chroma vector x = (x0, x1...x11)

T , the
transposed vector is defined as follows:

x(i) = (xi%12, x(i+1)%12 . . . x(i+11)%12)
T (1)

where i denotes the circular shift and % represents the mod-
ulus operator. In our experiments, we consider key transposi-
tion within five semitones, i.e. i ∈ {−5,−4 . . . 0 . . . 4, 5}.

2.2. Vector embedding

We extract a CENS sequence from each recording and use
a matrix X = [x1, x2...xM ] to represent the sequence. Simi-
larly, the transposed sequence X(i) =

[
x(i)
1 , x(i)2 ...x(i)M

]
is con-

structed from the transposed vectors. Then, similar technique
in [5] is utilized to exploit more temporal information. This
technique incorporates chroma vectors into high-dimensional
vectors. The embedded vector is written as follows:

x̂j =
[
xTj , xTj−1 . . . xTj−(m−1)

]T
, j = m,m+ 1 . . .M (2)

where m is the embedded dimension and set to be 19 in the
experiments. These embedded vectors are combined to yield
an embedded sequence:

X̂ = [x̂m, x̂m+1, x̂m+2 . . . x̂M ] (3)

Note X has a shape of 12×M , and X̂ has a shape of 12m×
(M −m + 1). Similarly, we can construct an embedded se-

quence X̂
(i)

from X(i).

2.3. Vector quantization and encoding

We extract embedded sequences X̂1, X̂2 . . . X̂N from refer-
ence recordings in the dataset, and Vector Quantization is
used to cluster embedded vectors. It results in code sequences
and a codebook for encoding. The codewords represent quan-
tization vector centroids numbered by {0, 1, 2...K − 1} (K is
the scale of codebook). As for the query, we transpose its
CENS sequences first, and embedded sequences are encoded
by the codebook to generate code sequences. Transposing
query sequences instead of reference sequences, we do not
need to store the transposed sequences for the dataset and thus
can lower the storage.

By transforming into code sequences, structural changes
in music are eliminated partly since similar embedded vectors
might be clustered into the same group. Even though great
differences often exist in cover songs, we empirically find that
code sequences of cover songs reveal high similarity, while
code sequences of different songs show little similarity. An
example is displayed in Figure 2.
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Furthermore, converting feature sequences into code se-
quences shows advantages of high efficiency. Many cover
song identification methods involve steps to compute some
distances like the Euclidean distance between two feature se-
quences. Representing music with code sequence avoids this
sort of computation. Of course, encoding needs extra compu-
tation, but it could be dramatically reduced by Nearest Neigh-
bor Searching algorithm. In addition, as the set of codes is
finite, it is convenient to build an index for further processing.

2.4. Bigram histogram and similarity

After converting audio into code sequences, we represent the
recording with its bigram histogram (note that we only count
the number of each bigram but not normalize it). When con-
structing bigrams, we consider not only adjacent codewords
but also skipping bigrams with a distance s to reduce the in-
fluence of local variations. An example could demonstrate its
merits. Given {1, 2, 3} and {1, 3}, measuring the similarity
of bigram histogram ends up with no likeness as they do not
share any bigrams. However, given the skipping gap s = 2,
we can construct skipping bigrams as {(1, 2), (1, 3), (2, 3)}
and {(1, 3)} for the two sequences. Indeed, the two sequences
share the same pair (1, 3), and they show some kind of simi-
larity.

Then, given two code sequences, their similarity is de-
fined as the overlap of their bigram histograms. Given a query
song u and a reference song v, we generate 11 code sequences
from u in consideration of key transposing. The similari-
ties between these sequences and v’s code sequence are com-
puted, and the maximum similarity is defined as the similarity
between u and v:

S(u, v) = max
i∈{−5,−4...5}

∑
a,b

min{f (i)
u (a, b), f (0)

v (a, b)} (4)

where f (i) represents the histogram of skipping bigrams in
the code sequence, i indicates tonal transposition, and (a, b)
denotes a specific skipping bigram. Moreover, as the his-
togram f (i) is often sparse, we are inspired to adopt inverted
index for acceleration.

2.5. Inverted index

The inverted index is stored in a table which contains map-
pings from specific bigrams to the recordings that own these
bigrams. Each row of the table has a key and a list containing
the identifiers of recordings and the corresponding bigram fre-
quencies (see Figure 3). Besides, a hash function is designed
to generate key values from bigrams. Given a bigram (a, b),
its key value is defined as:

h (a, b) = 2Ba+ b (5)

where B represents the shift width, and a, b, B satisfy that
0 ≤ a, b < K and B = dlog2 Ke(K is the scale of code-
book). This function shifts a left by B bits and adds b to it.

Key Freq. | Id. Freq. | Id.(a, b)
h

1 Freq.=2 | Id.=0 Freq.=3 | Id.=1(0, 1)
h

4 Freq.=2 | Id.=0(1, 0)
h

Structure of each row in the table:

An example:

...

Fig. 3. Structure of the table. Given B = 2, an example is
provided to demonstrate the structure of the table. Consider
two songs with the identifier of 0 and 1. The first song has
bigrams (0, 1) and (1, 0) with the frequency of 2. The second
song has a bigram (0, 1) with the frequency of 3.

Obviously, it is a one-to-one function and maps distinct bi-
grams to a set of integers with no collisions. Given a pair
(a, b), the table helps search the recordings that contain this
pair and the corresponding frequencies. In other words, we
could find {(v, f (0)

v (a, b))|f (0)
v (a, b) > 0} quickly.

2.6. Retrieval

Given a query u, our model first generates code sequences
through transposing and embedding. Then, the bigram his-
togram f

(i)
u is computed. Fixed i, for each pair (a, b) ∈

{(a, b)|f (i)
u (a, b) > 0}, we find {(v, f (0)

v (a, b))|f (0)
v (a, b) >

0} through the table. Then, the similarities between u’s code
sequences and the reference code sequences can be calcu-
lated. Finally, enumerating i ∈ {−5,−4 . . . 5}, the algorithm
computes the similarity between the query and the reference
and returns a ranking list.

3. PREPARATION

In our experiment, the mean average precision (MAP), the
precision at 10 (P@10) and the mean rank of first correctly
identified cover (MR1) are applied to assess the perfor-
mances. We use MC and Youtube to evaluate our approach.

We build up an in-house database called MC, consisting
of 2475 music recordings and 165 cliques. This collection
mainly contains Chinese, Cantonese, Japanese and Korean
popular music. This database is used to tune the hyperpa-
rameters s,K. Youtube contains 50 compositions, with 7
recordings of each composition. Following the setting of [18,
19], we compare our approach with recent methods on this
database.

4. EXPERIMENTS

4.1. Influence of hyperparameters

Fixing K = 1024, we resample CENS sequences with dif-
ferent rate r to simulate different speed. The experiment is
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Fig. 4. Influence of s on MC-150. Note that s = 1 repre-
sents a bigram model, and for s = 0 the model degrades to a
monogram model.
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Fig. 5. Curve of the optimal K and the extent of database N

conducted on MC-150, a subset generated from MC contain-
ing 150 songs (each song has two versions; thus it has 300
recordings totally). Figure 4 shows that under different speed
r, increasing s improves the performance until s goes higher
than 5. By exploiting skipping bigrams, the algorithm out-
performs monogram and bigram models, showing robustness
against speed variations. Besides, note that constantly in-
creasing s does not weaken the performance. It is due to the
sparseness of bigram histograms; even if more skipping bi-
grams are constructed, these redundant pairs do not affect the
calculation of similarity.

Different from m, K possibly depends on the size of the
database. It is consistent with an intuitive thought: the more
recordings we have, the more codes we need to encode the
recordings. Importantly, we care about how many codes we
need to ensure good performance. We assume that given a
database with N recordings, a K corresponding to the highest
MAP is defined as the optimal K. To explore the relationship
of these parameters, we generate subsets from MC with dif-
ferent scales and run our model to find the optimal K. Then,
the optimal K corresponding to N is drawn and the curve is
plotted in Figure 5. Interestingly, Figure 5 demonstrates that
sub-linear relationship exists between N and K. This result is
inspiring since given a dataset with N recordings, we expect
a small K to reduce the encoding time.

MAP P@10 MR1 Time/s Complexity
DTW [19] 0.425 0.114 11.69 56.50 O(NM2)

Silva et al. [19] 0.478 0.126 8.49 3.71 O(NMS)
Serra et al. [21] 0.525 0.132 9.43 2419.20 O(NM2)
Silva et al. [18] 0.591 0.140 7.91 18.72 O(NM logM)
Rafii CQT [22] 0.521 0.122 9.75 - O(NM2)

Rafii fingerprint [22] 0.648 0.145 8.27 - O(NM2)
Skipping bigrams 0.617 0.147 7.42 3.40 O(M logK)

Table 1. Performances of different approaches. Note these
baselines are reported on the original papers, [22] does not
provide the running time, and S is far smaller than M .

4.2. Comparision

Based on the analysis above, we employ our approach on
Youtube with s = 9,K = 2048 and run our model for ten
times. As the deviation is small, we only report the mean
in Table 1. Experimental results show that our approach
achieves the highest P@10 and MR1. We only obtain CENS
features used in [19, 18, 21]1, and it is fair to compare the
performance of these systems. However, the state-of-the-
art method [22] extracts sophisticated fingerprints from raw
audio and achieves the highest MAP. It is possible that our
model could achieve better results by using these features.

As for query time, our approach runs fast and spends 3.40
seconds on a query in average. Note that these methods are
implemented in different environmental settings, and thus it
is hard to compare their efficiency. In our case, we use a
Dell PowerEdge R730 server with an Intel Xeon E5-2640v3
processor and implement the approach in Python and C++2.
A thorough comparison of the efficiency is to consider their
time complexity.

Through using Nearest Neighbor Searching algorithm, it
takes O(M logK) to convert music to code sequences. By
exploiting inverted index, the matching process is highly ef-
fective, far less time-consuming than the encoding procedure.
Overall, the complexity of query time becomes O(M logK),
which avoids exhaustive search and is more efficient than
other approaches. Of course, constructing the codebook
and the inverted index requires extra computation, but these
processes run for one time and do not affect query time.

5. CONCLUSION

We have presented an approach based on skipping bigrams for
cover song identification. By converting audio into code se-
quences and applying skipping bigrams, our approach shows
robustness against speed and structure variations. Besides,
we design an inverted index for fast retrieval. Our approach
achieves good performances with low time cost on a recent
cover song dataset. In future, we will use other methods
to encode raw audio and apply our approach to large-scale
databases.

1https://sites.google.com/site/ismir2015shapelets/data
2https://github.com/NovaFrost/skipping
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