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ABSTRACT

We conduct a large-scale study of language models for chord predic-
tion. Specifically, we compare N -gram models to various flavours
of recurrent neural networks on a comprehensive dataset compris-
ing all publicly available datasets of annotated chords known to us.
This large amount of data allows us to systematically explore hyper-
parameter settings for the recurrent neural networks—a crucial step
in achieving good results with this model class. Our results show
not only a quantitative difference between the models, but also a
qualitative one: in contrast to static N -gram models, certain RNN
configurations adapt to the songs at test time. This finding consti-
tutes a further step towards the development of chord recognition
systems that are more aware of local musical context than what was
previously possible.

Index Terms— Language Modelling, Chord Prediction, Recur-
rent Neural Networks

1. INTRODUCTION

Chord recognition is a long-standing topic in the music information
retrieval community. Steady advances notwithstanding, results have
seemed to stagnate in recent years. The study in [1] offers possi-
ble explanations, including invalid harmonic assumptions, limita-
tions of evaluation measures, conflicting problem definitions, and
the subjectivity inherent to this task. All of these criticisms are cer-
tainly valid, and in our view, the latter two bear the greatest potential
to hamper further improvements. However, at present there is still
a large performance gap between human annotators (measured via
inter-annotator agreement) and automatic systems [1], although they
are subjected to the same constraints.

We can divide a chord recognition system into two parts:
hearing (acoustic modelling, feature extraction) and understand-
ing (combining observations, finding a meaningful chord sequence).
Research has focused mainly on the former by finding better features
and acoustic models [2–4], while only a few works have explored
improvements of the latter using temporal models [5–7]. This trend
was reinforced through the insight that existing temporal models do
little but smooth the noisy predictions of the acoustic model over
time, i.e. they mainly model the chord’s duration [8, 9].

Thus, we suggest another possible explanation for the perfor-
mance gap: current state-of-the-art chord recognition systems lack
a meaningful understanding of harmony and its development in mu-
sic. As shown in [10], such an understanding can only derive from
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Name Ref. No. Pieces No. Chords

Beatles [11] 180 12 646
Jay Chou [12] 29 3 356
McGill Billboard [13] 742 70 197
Queen [14] 20 2 265
Robbie Williams [15] 65 6 513
Rock [16] 201 18 343
RWC [17] 100 12 726
US Pop 2002 [18] 195 23 309
Weimar Jazz [19] 291 18 179
Zweieck [14] 18 1 822

Total 1 841 169 356
Unique 1 766 161 796

Table 1. Individual datasets used to create the compound dataset in
this study. For the Rock corpus, we used the annotations by Temper-
ley rather than those by De Clerq.

sequential models that operate at higher temporal levels than those
based on audio frames.

The present work addresses this issue by exploring the capabili-
ties of automatically learned chord language models to predict chord
sequences. To our knowledge, this paper constitutes the first at-
tempt to systematically find and evaluate such models. We have seen
work on optimising low-level and/or Markovian temporal models in
e.g. [9], and work on low-level non-Markovian models in e.g. [5],
but as argued in [10], at the level of audio frames, there is little to
improve upon the current state-of-the-art.

Our work compares recurrent neural networks (RNNs) with
higher-order N -gram models. We evaluate these models inde-
pendently based on how well they predict chord sequences. The
question on how to integrate them into a complete chord recognition
system is left for future work.

2. DATA

We compiled a comprehensive set of chord annotations to perform
a large-scale evaluation of different language models for chord pre-
diction. To our knowledge, our compound dataset consists of all
time-aligned chord annotations that are publicly available. Table 1
provides detailed information about the data. In total, we have 1 841
songs from a variety of genres and decades, with a focus on pop/rock
between 1950 and 2000. After we remove duplicate songs and merge
consecutive identical annotations, the dataset consists of 1 766 songs
containing 161 796 unique chord annotations.
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The dataset is miniscule compared to those available for natural
language processing: e.g., the NYT section of the English Giga-
word dataset (of which only a subset of 6.4 million words is used
in [20] for training language models) consists of 37 million words.
Therefore, we leverage domain knowledge to generate additional,
semi-artificial chord sequences. Assuming that chord progressions
are independent of musical key (as in Roman numeral analysis), and
that musical keys are uniformly distributed (a simplifying assump-
tion), we transpose each chord sequence to all possible keys during
training. This step increases the amount of training sequences by
a factor of 12; however, the artificially created data are highly cor-
related with the existing data, and thus are not equivalent to truly
having 12 times as much data available. We will refer to this process
as data augmentation in the remainder of this paper.

We focus on the major/minor chord vocabulary, and follow the
standard mapping as described in [9]: chords with a minor 3rd in
the first interval are considered minor, the rest major. This mapping
results in a vocabulary of size 25 (12 root notes ×{maj,min} and
the “no-chord” class). Bearing in mind the reduced vocabulary and
the more repetitive nature of chord progressions compared to spoken
language, we feel that the size of this dataset after data augmentation
is appropriate for training and evaluating models for chord predic-
tion.

3. EXPERIMENTAL SETUP

Our experiments evaluate how well various models predict chords.
This amounts to measuring the average probability the model assigns
to the (correct) upcoming chord symbol, given the ones it has already
observed in a sequence. More formally, given a sequence of chords
y = (y1, . . . , yK), the model M yields PM (yk | yk−1

1 ) for each k.
(We denote y1, . . . , yk−1 as yk−1

1 .) The probability of the complete
chord sequence can then be computed as

PM (y) = PM (y1) ·ΠK
k=2PM

(
yk | yk−1

1

)
. (1)

The higher PM (y), the better M models y. To measure how
well M models all chord sequences in a dataset Y , we next compute
the average log-probability assigned to its sequences:

L(M,Y) =
1

NY

∑
y∈Y

log (PM (y)) , (2)

where NY is the total number of chord symbols in the dataset.
This equation corresponds to the negative cross-entropy between the
model’s distribution and the data distribution.

All models are trained and tested on the compound dataset. We
use 20% of the data for testing, and 80% for training. 15% of the
training data is held out for validation. All splits are stratified by
dataset.

4. N -GRAM LANGUAGE MODELS

N -gram language models are Markovian probabilistic models that
assume a fixed-length history (of length N − 1) in order to predict
the next symbol. Hence, they assume PM (yk | yk−1

1 ) = PM (yk |
yk−1
k−N+1). This fixed-length history allows the probabilities to

be stored in a table, with its entries computed using maximum-
likelihood estimation (i.e., by counting occurrences in the training
set).

With larger N , the sparsity of the probability table increases
exponentially due to the finite number of N -grams in the training
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Fig. 1. Average log-probability of all evaluated N -gram models.

set. We solve this problem using Lidstone smoothing, which adds a
pseudo-count α to each possible N -gram. We determine the value
of α for each model using the validation set.

4.1. Model Selection

We find the best N -gram model by selecting the one with best re-
sults on the validation set. To this end, we evaluate models with
N ∈ {1, 2, 3, 4, 5, 6}, with and without data augmentation. N = 1
corresponds to a model that predicts chords just by their frequency
in the training data, N = 2 to a model that could be deployed in a
simple first-order Hidden Markov Model.

Figure 1 presents the results of the models on the training and
validation sets. With data augmentation, the best result is achieved
by a 5-gram model (α = 0.3).

5. RECURRENT NEURAL LANGUAGE MODELS

Recurrent Neural Networks (RNNs, see [21] for an overview) are
powerful models designed for sequential modelling tasks. In their
simplest form, RNNs transform input sequences xK

1 to an output
sequence oK

1 through a non-linear projection into a hidden layer hK
1 ,

parameterised by weight matrices Whx, Whh and Woh:

hk = σh (Whxxk + Whhhk−1) (3)
ok = σo (Wohhk) , (4)

where σh and σo are the activation functions for the hidden layer
(e.g. the sigmoid function), and the output layer (e.g. the softmax),
respectively. We left out bias terms for simplicity.

Their use as language models was proposed in [20]. For this
purpose, the input at each time step k is a vector representation of
the preceding symbol yk−1. We call this the chord embedding, and
denote it v(yk−1). In the simplest case, this is a one-hot vector. The
network’s output ok is then interpreted as the conditional probability
over the next chord symbol PM

(
Yk | yk−1

1

)
. During training, the

categorical cross-entropy between the ok and the true chord symbol
is minimised by adapting the weight matrices in Eq. 3 and 4 using
stochastic gradient descent and back-propagation through time. Fig-
ure 2 provides an overview of the model structure.

Each output ok depends on all previous inputs yk−1
1 through the

recurrent connection in the hidden layer. This allows the network to
consider all previous chords when computing PM (yk | yk−1

1 ). In
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Fig. 2. A simple RNN-based language model. We can easily stack
more recurrent hidden layers or add skip-connections between the
input and each hidden layer or the output.

practice, this capacity is limited because of the limited size of the
hidden layer, and the fragile learning procedure of back-propagation
through time, which faces the well-known problems of exploding
and vanishing gradients.

5.1. Chord Embeddings

As mentioned earlier, we need to represent chord classes as vectors
to use them in the RNN language model framework. In this work,
we explore three possibilities: 1) using the one-hot encoding of the
class, 2) using a fixed-length vector that is learned jointly with the
language model, and 3) learning an embedding using the word2vec
skip-gram model [22] before training the language model itself. In
this case, the chord embeddings are optimised to predict the neigh-
bouring chords.

5.2. Model Selection

RNNs have more hyper-parameters compared to N -gram models:
we can set the number of hidden layers, the size of each hidden
layer, the type and dimensionality of the input chord embedding,
the activation function for each hidden layer, whether to use skip-
connections, and finally, we can decide to use simple RNNs or more
advanced hidden layer structures such as Long Short-Term Memory
(LSTM) [23] or Gated Recurrent Units (GRU) [24]. Additionally,
the training procedure has its own hyper-parameters, such as learn-
ing rate or mini-batch size. Table 2 presents the hyper-parameter
space we sampled from.

We fix the following hyper-parameters for all training runs: we
apply data augmentation, employ stochastic gradient descent with a
batch size of 4 and the ADAM update rule [25], set all hidden layers
to the same (but variable) size, and stop training if the validation loss
does not improve within 15 epochs.

The large number of hyper-parameters prevents us from con-
ducting an exhaustive search for the optimal architecture. Instead,
we use Hyperband [26], a bandit-based black-box hyper-parameter
optimisation scheme, to find good configurations for each considered
RNN type.

In total, we considered 128 configuration for each RNN type
(384 different models). The best RNN setup used one-hot input en-
coding, skip connections, and Nh = 5, Dh = 256, lr = 2.5e−4.
The best GRU also used one-hot input encoding, but no skip connec-
tions, and Nh = 3, Dh = 512, lr = 1e−3. The best LSTM used a
word2vec input encoding with 16 dimensions, skip connections, and
Nh = 3, Dh = 512, lr = 1e−3.

Hyper Parameter Sample Space

Embedding Size {4, 8, 16, 24}
Embedding Type {one-hot,word2vec, learned}
No. Hidden Layers Nh ∈ {1, 2, 3, 4, 5}
Hidden Layer Size Dh ∈ {128, 256, 512, 1024}
Skip Connections {yes, no}

Learning Rate lr =

{
{0.001, 0.0005} Nh ≤ 3

{0.0005, 0.00025} else

Learning Rate (GRU) lr =

{
{0.005, 0.001} Nh ≤ 3

{0.001, 0.0005} else

Table 2. Hyper-parameter space we sampled from to find good
model configurations for each of the RNN types (simple, LSTM,
GRU). Possible learning rate values were determined on a limited
number of preliminary experiments.

5-gram RNN GRU LSTM

Val. 1.830 1.465 1.328 1.302
Val. (fine-tuned) — 1.417 1.290 1.272

Test 1.874 1.387 1.244 1.249

Table 3. −L(M,Y) (lower is better) on the validation and test sets
for the best model of each model class. All RNN-based models out-
perform the 5-gram model, with the GRU yielding the highest avg.
log-probability. Statistically equivalent results are marked in bold.

In a final step, we further improve the learned models by a fine-
tuning stage. Here, we take the best models found for each RNN
type, and re-start training from the epoch that gave the best results
on the validation set, but use 1/10 of the original learning rate. As
shown in Table 3, this step slightly improves the models.

6. RESULTS AND DISCUSSION

We compare the best model of each RNN type with the 5-gram base-
line. To this end, we compute L(M,Y) according to Eq. 2 on the
test set, and present the results in Tab. 3 and Fig. 3. We see the RNN-
based models easily outperform the 5-gram model, with the LSTM
and GRU models performing best. Statistical significance was deter-
mined by a paired t-test with Bonferroni correction.

Recurrent neural networks have the capability to remember in-
formation over time. We thus call them dynamic models, compared
to the static characteristic of standard models based on N-grams.
To investigate if the RNN-based language models can leverage this
capability, we examine the development of their prediction quality—
the log-probability of the correct chord—over the progression of
songs.

This is a function of both model capacity and song complexity:
given a static model, and repetitive songs that do not change much
over time, the log-probabilities assigned to the chords should remain
approximately constant; however, if e.g. chords in interludes tend to
deviate more from standard chord progressions, static models would
yield lower log-probabilities in these cases. On the other hand, if a
dynamic model could remember chord progressions from the past,
the predictions would improve over time for very repetitive songs.
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The numbers in parentheses show the number of chord predictions in each set. Whiskers are 95% confidence intervals computed using
bootstrapping. We observe a similar pattern for each set, with the LSTM and GRU performing equally on most of the datasets. We also see
that chords are easier to predict in some datasets (e.g. “Rock”), while more difficult in others, (e.g. “RWC”).
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Fig. 4. Avg. cumulative log-probability per chord step
L≤(k;M,Y). The predictions of the static 5-gram model worsen
over time, which indicates that chord progressions later in the songs
deviate more from general patterns than in the beginning. The LSTM
and GRU models do not suffer from this problem, however, and
predictions even improve after chord 40. We conjecture that these
models better remember previously seen chords and patterns, which
enables them to automatically adapt as a song progresses.

To evaluate this quantitatively, we first selected from the test
set songs that contained at least 100 chords, which left us with 136
pieces. We then computed the average cumulative log-probability of
chords up to a position in a song as

L≤(k;M,Y) =
1

k|Y|
∑
y∈Y

k∑
k̃=1

log
[
PM

(
yk̃ | y

k̃−1
1

)]
. (5)

Note that Eq. 5 converges to the objective in Eq. 2 with increasing k.
Figure 4 presents the results for each model. To our surprise, the

performance of the static 5-gram model drops significantly during
the first 20 chords and continues to fall until around chord 60, af-

ter which it stagnates. This indicates that the chord progressions in
the beginning of the songs are easier to predict by a static model—
i.e., more closely follow the general chord progressions the model
learned, while those later in the songs deviate more from common
patterns.

In comparison, the RNN-based models do not suffer during the
first 20 chords. Although they show similar behaviour during the
first 20 chords, the LSTM and GRU models also behave differently
later in the songs: both the GRU and the LSTM improve from around
chord 40, whereas the performance of the simple RNN continues to
drop until around chord 60 (similarly to the 5-gram model, but on a
higher level).

Since predicting chords later in the songs is more difficult than
at the beginning, but the LSTM and the GRU are only negligibly
affected by this (they almost recover to their performance at the be-
ginning), we argue that both the GRU and the LSTM models are
better capable of adapting to the current song. One explanation for
this might be that these models privilege intra-song statistics during
prediction. Thus, rather than learning a global, generic model trained
on the statistics of an entire corpus, we conjecture that these models
also acquire and apply knowledge about the immediate past.

7. CONCLUSION

We presented a comprehensive evaluation of chord language models,
with a focus on RNN-based architectures. We discovered the best
performing hyper-parameters, and trained and evaluated the models
on a large compound dataset consisting of various genres. Our re-
sults show that 1) all RNN-based models outperform N -gram mod-
els, 2) gated RNN cells such as the LSTM cell or the GRU outper-
form simple RNNs, and 3) that both LSTM and GRU networks seem
to adapt their predictions to what they observed in the past.

We conjecture that to improve the recently stagnant chord recog-
nition results, we need models with a better understanding of mu-
sic than has been demonstrated in previous state-of-the-art systems.
This work is a first step towards this goal. Future research needs
to deal with modelling chord durations appropriately, and with inte-
grating such models with frame-wise acoustic chord classifiers.
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