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ABSTRACT

We propose a novel method for full-sphere binaural sound
source localization that is designed to be robust to real world record-
ing conditions. A mask is proposed that is designed to remove
diffuse noise and early room reflections. The method makes use of
the interaural phase difference (IPD) for lateral angle localization
and spectral cues for polar angle localization. The method is tested
using different HRTF datasets to generate the test data and train-
ing data. The method is also tested with the presence of additive
noise and reverberation. The method outperforms the state of the art
binaural localization methods for most testing conditions.

Index Terms— Binaural, Localization, HRTF, Cepstrum.

1. INTRODUCTION

There are many applications that benefit from the ability for a ma-
chine to localize a sound source using a binaural recording of a sound
arriving from any direction on the full-sphere around the listener,
such as assisting the hearing impaired or being implemented in an
augmented reality system [1, 2, 3]. The head related transfer func-
tion (HRTF) describes the frequency based filtering effect of the lis-
tener’s head, pinna, and torso at the ear canals from a point in space.
The time domain equivalent is called the head related impulse re-
sponse (HRIR).

A HRTF dataset consists of a collection of measured HRTFs
at different directions of arrival around the listener. The HRTF
recorded at one ear and the corresponding HRTF recorded at the
other ear comprise a HRTF pair. From this HRTF pair, interaural
parameters can be derived, including the frequency dependent inter-
aural phase difference (IPD) and interaural level difference (ILD).
These interaural parameters are frequently used in binaural sound
source localization methods. It was shown in [4] that while the
state of the art methods which only use interaural parameters are
able to accurately estimate the lateral angle of a sound, they are not
able to localize its elevation. Spectral cues provide an additional cue
for elevation localization [5]. In particular, the peaks and notches
found in the HRTFs and their relative levels are used to discern the
direction of arrival (DOA) of the sound source in elevation [6].

When recording impulse responses, unwanted artefacts are in-
troduced into the recording. These artefacts are associated with the
acoustic environment; the measurement procedure and equipment;
and the post-processing of the data [7, Chapter 8]. Some localiza-
tion methods are tested by generating their test data and training data
synthetically from the exact same HRTF dataset [8, 9]. This is re-
ferred to as the matched HRTF condition throughout this paper. The
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mismatched HRTF condition refers to the case of testing a method
using different HRTF datasets to generate the training and test data.
For this mismatched condition, the HRTF datasets are captured using
the same model of dummy head, but in different rooms, using differ-
ent measurement equipment. For full-sphere binaural sound source
localization to be possible in a real world case with the use of a pre-
measured HRTF dataset, the method must be robust to additive and
convolutive noise provided by the recording equipment. Therefore
it is necessary to test using the mismatched HRTF condition. The
state of the art full-sphere binaural sound source localization meth-
ods have not been tested using this mismatched condition. Either
they have been tested using the matched HRTF condition [8, 9],
or the test sounds and template HRTFs were recorded in the same
location, using the same recording equipment [10].

In this paper, we propose a full-sphere binaural sound source
localization method that is designed to be robust to this mismatched
HRTF condition. It uses the IPD for lateral angle localization and
spectral cues for elevation localization using a training dataset of
HRIR pairs. The proposed method is tested for both the matched
and mismatched HRTF conditions, and is additionally tested with
reverberation and additive noise.

2. PROPOSED METHOD OVERVIEW

In anechoic conditions, the signal received at the ear of a listener,
yζ(t) from a single sound source in space, s(t) is filtered by the
head related impulse response (HRIR), hζ(t), where the channel in-
dex, ζ ∈ {l, r} denotes the left and right ear respectively. This de-
scribes the direct path of the sound. In reverberant environments, the
total impulse response is comprised of the HRIR and an additional
component provided by the acoustic reflections, εζ(t). The acoustic
reflections consist of early reflections, which have directionality and
later reflections which are diffuse [7]. If this sound is recorded
at the ears, the recording equipment and procedure may also in-
troduce convolutive noise, νζ(t) and additive noise, χζ(t). Thus,
the signal received at the ear of the listener is given by: yζ(t) =
s(t) ∗ (hζ(t) + εζ(t)) ∗ νζ(t) +χζ(t). Let the discrete time domain
equivalent of yζ(t) be yζ(n). The short-time Fourier transform of
yζ(n) is Yζ(p,m), where p and m are the frequency index and time
index respectively. For each time-frequency unit (p,m), the IPD is
defined as: φ(p,m) = ∠(Yl(p,m)/Yr(p,m)) ∈ (−π, π].

2.1. Mask

The aim of the mask is to identify time-frequency units that are dom-
inated by the sound from the direct path and those which are dom-
inated by noise or acoustic reflections [11, Chapter 1]. If a sound
source is active in a given frequency band, the level of the sound
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from the direct path should be higher than that of the early reflec-
tions and diffuse reverberation. In principle, the probability density
of the IPD for diffuse reverberation and stereo uncorrelated noise
should be relatively flat [12]. Conversely, for a given frequency
band, a high ratio of time-frequency units dominated by the direct
path of the sound to time-frequency units dominated by reflections
or noise yields a peak in the probability density of the IPD. The au-
thors in [12] created a mask that removes diffuse noise based on the
probability density of the interaural parameters. We have designed
our mask to remove early reflections and diffuse noise. The diffuse
noise can be removed even if it shares the same IPD as the direct
sound. We achieve this by additionally considering the level at the
left and right ears, S(p,m) = max{Yl(p,m), Yr(p,m)}. In each
frequency band, p, the time indices, m̂ ∈ {1, 2, 3...} are ordered by
their corresponding level, S(p, m̂), such that the first index, m̂ = 1
corresponds to the highest level in frequency band, p and the second
index, m̂ = 2 corresponds to the second highest level, etc. A kernel
density estimator is used to estimate the probability density function,
R(φ; p, b) of the IPD, φ, using a Gaussian kernel smoothing func-
tion. To account for phase circularity, the PDF is estimated using all
aliases of the IPD in the range (−3π, 3π] for each time-frequency
unit:

R(φ; p, b) =
1

ρ
√

2πσ2

1∑
d=−1

bρ+ρ∑
m̂=bρ+1

e
− (φ−φ(p,m̂)+2πd)2

2σ2 , (1)

where b refers to the sample, b ∈ {0, 1, 2, 3, ..., Q} of sample size
ρ of time-frequency units for a given frequency band, and σ is a fixed
standard deviation for all of the Gaussian components that make the
kernel distribution. The value υp = arg maxφ∈(−π,π](R(φ; p, b =

0)) is stored for each frequency band. To create the mask, M(p, m̂),
a threshold, η is chosen, such that if R(φ = υp; p = A, b = 0) <
η, for frequency band, A, then M(p = A, m̂) = 0,∀m̂, and if
R(φ = υp; p = A, b) > η,∀b, for frequency band, A, then M(p =
A, m̂) = 1, ∀m̂. Otherwise, the sample,Bp for each frequency band
is found, such that: Bp = arg minb(R(φ = υp; p, b) < η) ,and the
mask is created from this:

M(p, m̂) =

{
1 (υp − ξ < φ(p, m̂) < υp + ξ) ∧ (m̂ < ρBp)

0 otherwise
,

(2)
where ξ is a fixed constant.

2.2. Cone of confusion

The interaural-polar coordinate system is used to describe the direc-
tion of arrival of the sound source. It does so with a lateral angle,
λ ∈ [−90◦, 90◦], and polar angle θ ∈ [−180◦, 180◦). For the polar
angles: 0◦ is at the front of the listener, 90◦ is above the listener,
and 180◦ is at the back of the listener [13]. For differing lateral
angles, there is a diversity in IPD, for a given frequency band. How-
ever, there is a similarity in IPD in different regions on the polar di-
mension, which gives rise to the cone of confusion [14, Chapter 1].
For time-frequency units containing only sound from the direct path
within a given frequency band, the IPD should be the same for each
of these units, irrespective of the sound source, for a given DOA.

For non-moving sound sources, the polar angle must be es-
timated using spectral cues. For the proposed method, a HRTF
dataset is used as training data, and the spectral cues of the test
sound are compared with the spectral cues of HRTF pairs in the
training dataset. In contrast to the IPD, the spectral cues vary
depending on the sound source, which may provide confounding in-
formation for a comparison with the spectral cues of the HRTF pairs

in the training dataset. Because the IPD is sound source agnostic, the
lateral angle of the sound can be estimated with greater reliability
than the polar angle. As such, the cone of confusion is firstly esti-
mated and the polar angle is then estimated as a point on the cone of
confusion. For the proposed method then, the HRTF dataset is used
as training data to estimate the cone of confusion by determining
the most likely HRTF pair for each polar angle in the dataset. A
grid is formed on the lateral-polar plane, consisting of points in 2◦

increments in the lateral and polar dimensions. α ∈ {1, 2, 3, ..., γ}
and β ∈ {1, 2, 3, ..., µ} are the indices of the lateral and polar
angles of the points on the grid, respectively. The HRIR pair in
the HRTF dataset with the closest direction of arrival to each grid
point is is referred to as hαβζ (n), which has a corresponding HRTF
pair Hαβ

ζ (p). The FFT size used to transform the HRIRs to HRTFs
is the same as the FFT size used to generate each time frame
for φ(p,m), as such the frequency index, p can be used for both
Hαβ
ζ (p) and φ(p,m). From this, the IPD templates are generated:

Υαβ(p) = ∠(Hαβ
l (p)/Hαβ

r (p)) ∈ (−π, π]. The IPD difference,
Γαβ(p,m) is given by: Γαβ(p,m) = mind∈{−1,0,1}(|Υαβ(p) −
(φ(p,m) + 2πd)|). For each polar angle βκ, the corresponding
lateral angle ακ that lies on the cone of confusion is given by the
maximum likelihood of the masked IPD difference:
(ακ, βκ) = arg max

α∈{1,...,γ},β=κ

∑
p,m

M(p,m).ln(N (Γαβ(p,m)|0, 1)),

(3)

where κ ∈ {1, 2, 3, ..., µ} are the indices of the cone of confusion,
which have corresponding lateral and polar angles (ακ, βκ). It was
found experimentally that the optimum result for cone of confusion
estimation was yielded by using an upper limit on the frequency in-
dices, p corresponding to a frequency of 11kHz.

2.3. Spectral pre-processing

The test sound is created by reconstructing the binauralized signal in
the time domain, ŷζ(n). In order to do this, the mask is applied in
the time-frequency domain: Ŷζ(p,m) = M(p,m).Yζ(p,m), after
which the inverse short-time Fourier transform is applied. For the
spectral pre-processing stage, the same operations are performed on
both the test sound and the HRIR pairs on the estimated cone of
confusion, for both the left and right channels. Let Ψ(k) denote the
log-magnitude Fourier spectrum of a signal, ψ(n), such that Ψ(k) =
log10|F{ψ(n)}|, where F is the Discrete Fourier Transform (DFT),
and k is the frequency index in the discrete frequency domain. The
log-magnitude Fourier spectrum of the reconstructed signal is then
denoted as Ψ̂(k).

The authors in [5] show that the main cues for polar angle lo-
calization on the median plane are the locations and relative levels of
the spectral peaks and notches in the HRTFs. To identify the peaks
and notches, the rapid fluctuations present in the HRTFs and the
spectrum of the test sound need to be removed. Additionally, in the
spectrum of the test sound and the HRTF templates exists a compo-
nent that slowly varies in magnitude throughout the frequency range.
This kind of slow varying component is present in the spectrum of
most natural sounds and is also introduced by convolutive noise from
recording equipment. This component has such a slow variation that
it does not obscure the location of the peaks and notches or the rela-
tive level of neighbouring peaks and notches. In order to compare the
relative positions of the peaks and notches in the test sound and tem-
plates then, this slow varying component needs to be removed. Two
variants of this method are proposed which both remove the rapid
fluctuations and the slow varying component present in the spectrum,
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which is denoted by Ψ̀(k) in the general case. For both variants of
the spectral pre-processing stage, it was found experimentally that
the optimum results were achieved using an upper limit, J for the
frequency index, k corresponding to a frequency of 11kHz. The fre-
quency domain consists of indices corresponding to frequency bands
in the mask that contain only zeros, kD and indices corresponding
to frequency bands that contain non-zeros, kC .

The first variant is referred to as the Gaussian Filter variant.
For this variant, consider that applying a high-pass lifter to the
real cepstrum allows for the removal of the slow varying compo-
nent in the frequency domain [15, Chapter 31] [16, Chapter 13].
As the transformation from the frequency domain to the cepstral
domain involves a logarithm, the magnitude in the frequency do-
main cannot contain any zeros. To avoid zeros in the frequency
domain and to preserve the slow varying component in the log-
magnitude Fourier spectrum, linear interpolation is applied to the
log-magnitude Fourier spectrum over the frequency region kD ,
which yields Ψ̌(k). To remove the rapid fluctuations in the log-
magnitude Fourier spectrum, a Gaussian filter is used [5]. Defining
the Gaussian filter function as:

GW {G(q);x1, σg} =
1√

2πσ2
g

x1∑
x=−x1

G(q + x).e
−x2
2σ2g . (4)

The smoothed log-magnitude Fourier spectrum, Ψ̃(k) is given by:
Ψ̃(k) = GW {Ψ̌(k);x1, σg}. It was experimentally found that a
value of σg corresponding to a frequency of 450Hz yielded the op-
timum results. The slow varying component in the log-magnitude
Fourier spectrum is removed by the applying a high-pass lifter in
the cepstral domain and transforming the resulting signal back to the
frequency domain:

Ψ̀(k) = F{w(v).F−1{Ψ̃(k)}}, w(v) =

{
1 2 ≤ v ≤ N − 2

0 otherwise
,

(5)

where v ∈ {0, ..., N−1} are the indices of the cepstral coefficients,
cv in the cepstral domain.

The second variant is referred to as the Cepstrum Regres-
sion variant. For this variant, consider that applying a band-
pass lifter in the cepstral domain removes both the slow varying
component in the log-magnitude Fourier spectrum and the rapid
fluctuations. However, in order to transform a signal to the cep-
stral domain, the magnitude in the Fourier domain must be non-
zero throughout the range. Instead of transforming a signal to
the cepstral domain and applying a bandpass lifter, multiple lin-
ear regression can be used to estimate the cepstral coefficients.
Exploiting the fact that for the real cepstrum, cv = cN−v , the
Fourier transform of the real cepstrum is given by: Ψ(k) =
c0 + 2c1 cos(ω(k)) + 2c2 cos(2ω(k)) + ..., where ω(k) is nor-
malized discrete frequency, defined as ω(k) = πk/J . To find the
cepstral coefficients, a = [c0, ..., cu], we generate a model matrix as:
X = [1 2 cos(ω(kC)) 2 cos(2ω(kC)), ..., 2 cos(uω(kC))]. The
coefficient estimates, â can be obtained by the usual least squares
method: â = (XTX)−1XT .Ψ̂(kC), where XT is the transpose of
X [17]. The rapid fluctuations and slow varying component of the
log-magnitude Fourier spectrum are removed by reconstructing the
log-magnitude Fourier spectrum without using the lower order or
higher order coefficients:

Ψ̀(k) = 2

u∑
P=2

cP cos(Pω(k)). (6)

It was experimentally found that u = 8 yielded the optimum results.

For the specific cases, let Ψ̀(k) be denoted by Ỳζ(k) and H̀κ
ζ (k) for

the log-magnitude Fourier spectrum of the test sound and HRIR pairs
on the cone of confusion respectively with spectral pre-processing
applied.

2.4. Polar angle estimation

The spectral difference, Θκ
ζ (k) is given by: Θκ

ζ (k) = Ỳζ(k) −
H̀κ
ζ (k). For the polar angle estimation, it was found experimen-

tally that the optimum results were achieved using a lower limit, I
and upper limit, J for the frequency index, k corresponding to fre-
quencies of 4kHz and 11kHz respectively. The log-likelihood distri-
bution, Z(βκ) of each polar angle on the cone of confusion is given
by: Z(βκ) =

∑
ζ

∑J
k=I ln(N (Θκ

ζ (k)|0, 1)). The distribution is
noisy and it was found that the results improved by smoothing the
distribution. The smoothed log-likelihood distribution is given by:
Z̃(βκ) = GW {Z(βκ);x1, σg}. It was experimentally found that a
value of σg corresponding to 10◦ yielded the optimum results. The
HRTF template index, κ̂ corresponding to the estimated lateral and
polar angle of the test sound is given by:

κ̂ = arg max
κ

(Z̃(βκ)). (7)

3. TESTING PROCEDURE

Two reference methods are tested: The first reference method is the
Cross-Convolution method [18, 9], which is a full-sphere localiza-
tion method, and the second reference method is the Speech Prefilter
method which is a median plane localization method [8]. To de-
velop our implementation of both of these methods, we tested using
the same HRTF dataset that the authors in both papers used to obtain
results [19]. Our implementation of the cross-convolution method
produced similar results to those reported in [18, 9] using speech
sounds. For the Speech Prefilter method, we found that the perfor-
mance of our implementation of this method was strongly dependent
on the specific speech utterance used. As the specific speech utter-
ances used and the sample size are not specified in [8], we could not
directly compare our implementation to that of the authors.

10 environmental sounds have been selected for testing from the
sounds used in [20]. Namely, they are: Waves crashing, electric saw
cutting, water pouring, train moving, chopping wood, typing on key-
board, ice dropping into glass, bells chiming, cars honking and sheep
baaing. Speech is one of the most important everyday sounds and is
tested under its own category. 10 speech samples have been chosen
from the CSTR VCTK corpus [21]. The speech samples have been
selected to give an equal balance of male and female voices and a
diverse set of accents.

The lateral angular error is the lateral angle between the ground
truth test position and the estimated location of the sound source.
The central angular error is the angle between the ground truth test
position and the estimated position of the sound source, from the
point of view of the listener [4]. As lateral angular errors have been
shown to be relatively small when compared with errors along the
cone of confusion, the central angular error is a good indication of
the error in the polar dimension [22]. The HRTF dataset used to
generate training data for all conditions is the Gauss-Legendre 2◦

dataset, measured in [23]. For the matched HRTF condition, the test
sound is produced synthetically by convolving the HRIR pair from
the same dataset as the training data with each of the mono sound
sources above at the DOAs of interest. For the mismatched HRTF
condition, the test sound is produced using the dataset measured at
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the University of York as part of the SADIE project [24, 25]. Ad-
ditionally, to test the presence of reverberation, a Binaural Room
Impulse Response (BRIR) condition is tested. For this condition
the test sound is produced using the BRIRs from the dataset mea-
sured in [26], with the dummy head facing the front of the room.
A full sphere localization test is conducted using the DOAs of the
loudspeakers in [26] for the matched HRTF, mismatched HRTF and
BRIR conditions. Stereo uncorrelated white noise is added to the test
sounds at 4 different signal-to-noise ratios (SNRs). Additionally, a
median plane localization test is conducted with test sounds at 30dB
SNR.

4. RESULTS AND DISCUSSION
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Fig. 1. Central angular error (◦) (a-f) and lateral angular error (◦) (g-
i), as a function of signal-to-noise ratio (dB) for localization on the
full sphere. Results are shown for test sounds generated with BRIRs,
mismatched HRTFs, and matched HRTFs. The proposed method is
shown with both variants: Gaussian Filter (red), and Cepstrum Re-
gression (blue), as well as the reference method: Cross-Convolution
(black). Horizontal line within box: median; box: inter-quartile
range (IQR); whisker: within quartile ± 1.5.IQR; outliers are not
shown.

Figure 1 shows the central angular error and lateral angular er-
ror for the full sphere localization test. Figure 2 shows the central
angular error for the median plane localization test. For all cases,
the two variants of the proposed method perform at a similar level
to each other in all test conditions. In most test conditions, the pro-
posed method outperforms the reference methods. For the majority
of cases, for the proposed method, the lateral angular error is smaller
than the lateral angle that humans are able to discern [27]. This is
also true for the central angular error for speech, for all test con-
ditions at lower noise levels. This demonstrates that the method is
robust to convolutive and additive noise at lower noise levels. The
localization accuracy for environmental sounds was slightly worse
than for the speech sounds. This can be attributed to the spectrum of
certain environmental sounds and certain HRTFs having peaks and
notches in similar positions. This can also be attributed to the low
sound level of the spectrum in the high frequency range, resulting in
the sound in the high frequency range falling below the noise floor.
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Fig. 2. Central angular error (◦) , as a function of polar angle (◦) for
localization on the median plane. Results are shown for test sounds
generated with mismatched HRTFs, and matched HRTFs, shown
for speech sounds at 30dB SNR. The proposed method is shown
with both variants: Gaussian Filter (red), and Cepstrum Regression
(blue), as well as the reference methods: Cross-Convolution (black)
and Speech Prefilter (green). Horizontal line within box: median;
box: inter-quartile range (IQR); whisker: within quartile± 1.5.IQR;
outliers are not shown.

The Speech Prefilter method yielded reasonable results for
sound sources above the listener and yielded the worst results for
sound sources below the listener. For the Neumann KU-100 dummy
head, there is a pinna notch present in the 3.5kHz -7.5kHz region
of the HRTFs with DOAs below the dummy head, which is the
region used by this method. As the method does not try to remedy
the additive noise present, it is likely that the noise present in the
same frequency region as the pinna notch provides confounding
information, resulting in higher errors. It can be difficult to see on
the plot, that the Cross-Convolution method, for the matched HRTF
condition in the median plane localization test, estimates the DOA
with a central angular error close to 0◦ for all angles. However the
method performs poorly for the mismatched HRTF condition. The
cross-convolution method relies on a comparison between the left
channel and right channel, but as the head is theoretically almost
symmetrical, the HRTF for the left channel should be similar to its
right channel pair at all angles on the median plane. This indicates
that for the matched HRTF condition, the method is using the unique
measurement noise present in each HRTF pair in the dataset as a
localization cue. This would not occur in a real life setting and
demonstrates why developing a binaural localization method for use
with the matched HRTF condition should be avoided.

5. CONCLUSION

In this paper we present a full-sphere localization method with two
variants that is designed to localize a sound source in real world
conditions. The method uses a mask designed to remove early re-
flections and diffuse noise. The method is effective in estimating the
lateral angle of the sound source in all test conditions. The polar
angle is estimated well for speech sounds in the mismatched HRTF
condition and with a low level of noise and reverberation. Addi-
tionally, we show the disparity between results generated by the ref-
erence methods for the matched and mismatched HRTF conditions
and make the case that future binaural localization methods should
be developed for use with the mismatched HRTF condition.
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