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ABSTRACT

This paper presents a novel framework for active exploration in the
context of acoustic simultaneous localization and mapping (SLAM)
using a microphone array mounted on a mobile robotic agent.
Acoustic SLAM aims at building a map of acoustic sources present
in the environment and simultaneously estimating the agent’s own
trajectory and position within this map. Two important aspects
of this task are robustness against disturbances arising from re-
verberation and sensor imperfections and an appropriate degree of
exploration to achieve high map accuracy. Several approaches to
the latter aspect using information-theoretic measures have recently
been proposed. This study extends these approaches into a frame-
work based on the potential field method, which is a widely used
technique for robotic path planning and navigation. It allows to
determine exploratory movement trajectories for the robotic agent
via gradient descent, without requiring computationally expensive
Monte Carlo simulations to predict the effects of specific trajec-
tory choices. Furthermore, additional constraints like maintaining
a safe distance to acoustic sources can easily be integrated into
this framework. Experimental evaluation demonstrates that the pro-
posed method yields adequate exploration strategies of the acoustic
environment leading to accurate map estimates.

Index Terms— acoustic simultaneous localization and map-
ping, robot audition, potential field method

1. INTRODUCTION

The problem of acoustic scene mapping (ASM) has recently become
a popular topic in robot audition [1, 2, 3]. ASM aims at building a
map of the respective locations of acoustic sources present in the en-
vironment of a robotic agent. It is closely related to simultaneous
localization and mapping (SLAM) which is an extensively investi-
gated and still actively developed framework in robotics. The need
for applying SLAM-based methods arises through the fact that a mo-
bile robotic agent can move within the environment, but is not able
to directly observe its position. Hence, it must rely on direction-
of-arrival (DoA) estimates obtained from the recorded microphone
signals. A notable restriction of DoA observations is the fact, that
they only convey information about the relative angle between the
agent’s heading direction and the observed sound sources. This is
generally termed a bearing-only SLAM problem, as distance mea-
surements cannot be obtained in this case. However, efficient algo-
rithms have been proposed to tackle this problem by exploiting the
agent’s motion to build a map through triangulation [4].

An important aspect of the map building process is the maxi-
mization of the agent’s knowledge about the environment. In the
case of ASM, this refers to a reduction in uncertainty about the es-
timated source locations through movements of the robotic agent.

It is especially important when using bearing-only sensors, as ef-
fective motion trajectories have to be obtained to optimally support
the triangulation procedure. Implementations of SLAM algorithms
usually rely on a recursive Bayesian estimation framework and rep-
resent the map as a probability distribution over source positions and
the agent’s pose [5, 6]. This allows to directly obtain a measure of
uncertainty from the underlying probability density function (PDF).

Recent studies have proposed feedback strategies, which aim at
generating motion controls for the robotic agent to minimize the un-
certainty of the map. For instance, an information-based one-step-
look-ahead control scheme for binaural localization was introduced
in [7] and extended in [8]. It selects the next movement action in or-
der to maximize the expected information gain between two consec-
utive time-steps. A similar approach based on Monte Carlo explo-
ration (MCE) has been introduced in [9], where the expected infor-
mation gain was predicted using Monte Carlo simulations inspired
by the general framework presented in [10, Chap. 17]. Additionally,
these methods have recently been extended towards multi-step ahead
prediction and control in [11]. However, the described approaches
do not consider the full SLAM problem, as they assume that the
agent’s pose is known or can be observed through other modali-
ties. Related work without explicit knowledge of the agent’s pose
has been conducted outside the field of acoustic localization, e.g.
in [12] for laser-based SLAM.

This study considers the full acoustic SLAM problem in the con-
text of ASM. In contrast to previously proposed approaches using the
FastSLAM [1] algorithm or Gaussian mixture probability hypothe-
sis density (PHD) filters [2], the framework presented here is based
on the inverse depth parametrization (IDP) of the source state [13],
which allows an undelayed initialization of detected sources from
bearing-only observations and computationally efficient recursive
updates using an Unscented Kalman filter (UKF) [14]. A feedback
control strategy based on the potential field (PF) method [15, 16] is
proposed, which generates control inputs signals based on attractive
and repulsive potential functions. The original method, which was
developed in the context of path planning, navigation and obstacle
avoidance, is adapted here to the task of active exploration. There-
fore, task-specific forms of attractive and repulsive potentials are
introduced based on the uncertainty minimization principle. They
allow to generate trajectories supporting the triangulation capabil-
ities of the robotic agent by simultaneously keeping safe distances
towards mapped sources.

This paper is organzied as follows: Sec. 2 presents the acous-
tic SLAM model used in this study and describes the specific chal-
lenges of this method when using bearing-only acoustic measure-
ments. Sec. 3 introduces the proposed active exploration policy
based on the PF method and outlines the process of trajectory gener-
ation from attractive and repulsive potential functions. Sec. 4 com-
pares the proposed approach to previously introduced methods in
simulated acoustic scenarios, followed by the conclusions.
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2. ACOUSTIC SLAM MODEL

The acoustic SLAM model introduced in this study is based on the
general UKF-SLAM framework used for monocular vision [17]. At
each discrete time-step k, estimates of current robot pose rk and
the acoustic scene map s, have to be updated using their estimates
from the previous time-step, observed DoA measurements yk and
control inputs uk. The scene map is considered to be time-invariant,
implying that sound sources are not able to move within the envi-
ronment. Hence, the discrete time index is omitted here. Extensions
to dynamic acoustic scenes can be found in e.g. [3]. For a detailed
introduction into the general framework of probabilistic SLAM, the
reader is referred to [10, Chap. 10].

2.1. State space and system dynamics

The full state of the system is defined as xk =
[
rk s

]T , where
rk =

[
rx,k ry,k rθ,k

]T denotes the robot’s pose at Cartesian
coordinates {rx,k, ry,k} with heading direction rθ,k, while s =[
sT1 · · · sTN

]T models the acoustic scene map, represented by
n = 1, . . . , N source states sn. In bearing-only SLAM, it is not
possible to obtain an initial estimate of the Cartesian source po-
sition from only one set of DoA measurements. A delayed esti-
mate could be obtained using several measurements from consecu-
tive time-steps. However, due to measurement noise and association
ambiguities, delayed initialization is generally considered a prob-
lematic approach in the context of bearing-only SLAM. Therefore,
an alternative source state representation based on an IDP was pro-
posed in [13], which is adopted here. Each source is modeled by a 4-
dimensional state vector sn =

[
rx0,n ry0,n ρn αn

]T , where
rx0,n and ry0,n are the Cartesian coordinates of the robot at the time
of initialization, while ρn and αn represent the inverse distance and
relative angle towards the Cartesian position of the source, respec-
tively. The notion of an inverse distance is adopted here, to yield
a state variable that is bounded in ρn ∈ [0, 1

dmin
], where dmin is

a fixed minimum distance towards the source location. The actual
location of the n-th source can be obtained from the source state as

mn =

[
mx,n

my,n

]
=

[
rx0,n
ry0,n

]
+

1

ρn

[
cos(αn)
sin(αn)

]
(1)

in 2-dimensional Cartesian map space mn ∈ R2 which is assumed
in this study. It should be noted that an extension to three dimensions
is straightforward (see e.g. [2]).

The dynamics of the robot’s pose are governed by a two-wheel
differential drive motion model [18] according to the nonlinear
Gaussian process equation rk = f(rk−1, uk) + vk, with

f(rk−1, uk) =

rx,k−1 +
Ts
2
(uR,k + uL,k) cos(rθ,k−1)

ry,k−1 +
Ts
2
(uR,k + uL,k) sin(rθ,k−1)

rθ,k−1 +
Ts
dw

(uR,k − uL,k)

 , (2)

where Ts is the time between two consecutive discrete time-steps,
vk ∼ N (0, Qk) represents zero-mean Gaussian process noise with
covariance matrix Qk, uk =

[
uR,k uL,k

]T is the applied control
input representing the angular wheel velocities of the right and left
wheel and dW is the spacing between the two actuated wheels.

2.2. Measurement model

Let yk be an observation vector containing a set of DoA measure-
ments at the k-th time-step. Following the IDP approach discussed

in Sec. 2.1, the measurement model corresponding to the DoA of the
n-th sound source can be expressed as a nonlinear Gaussian mea-
surement equation yn,k = h(rk, sn) +wk, with

h(rk, sn) = atan2
(my,n − ry,k
mx,n − rx,k

)
− rθ,k, (3)

where wk ∼ N (0, Rk) represents zero-mean Gaussian measure-
ment noise with covariance matrix Rk. By exploiting the relation
between the Cartesian source position mn and the corresponding
source state sn given in Eq. (1), the measurement equation can be
expressed as

h(rk, sn) = atan2
( ry0,n − ry,k + 1

ρn
sin(αn)

rx0,n − rx,k + 1
ρn

cos(αn)

)
− rθ,k, (4)

which can be applied directly in the state estimation framework that
will be outlined in Sec. 2.4.

2.3. Map management

To obtain an accurate mapping of the acoustic scene, the estimated
map state has to be constantly monitored and updated. Two im-
portant steps in this map management process are the initialization
of newly detected sources in the map and the deletion of spurious
sources caused by measurement errors.

If an observed DoA cannot be assigned to an already mapped
source, it is considered as a candidate for extending the map state
space s with a new source sN+1. Therefore, an initial source state
has to be obtained from the measured DoA. As the distance can-
not be observed from the acoustic signal, a direct initialization of
the Cartesian source position is not possible. However, the IDP used
here provides a means to achieve undelayed initialization, even with-
out explicit distance information. For a detailed description of the
initialization procedure using IDP, cf. [13]. The deletion of unreli-
able source estimates and outliers due to spurious measurements is
handled using the log-odds ratio method described in [19].

2.4. State estimation

The system state is recursively estimated at each time-step using a
generic UKF framework. Many SLAM methods which do not use
acoustic signals as observations rely on the extended Kalman filter
(EKF) because of its reduced computational complexity compared
to the UKF [20]. This is especially useful when dealing with a
huge number of landmarks, e.g. in the context of laser or vision-
based SLAM. However, the number of sources in an acoustic scene
is usually limited, resulting in a rather small estimation state-space.
Therefore, the UKF is used here due to its more accurate estimation
capabilities in the presence of nonlinearities [14].

3. POTENTIAL-FIELD-BASED EXPLORATION

The PF method was introduced in [15] for robotic path planning and
obstacle avoidance. It is based on an artificial PF imposed on the
robot’s environmental map, which directs the robot to a specific goal
position by computing the gradient of this field. Herein, the goal
position is defined as an attractive force or minimum, whereas ob-
stacles act as repulsive forces, represented as peaks in the field. By
superimposing all artificial forces that influence the robot, a smooth
trajectory towards the goal position can be obtained.
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3.1. Potential functions

LetU(qk) = Ua(qk, n)+Ur(qk) be a differentiable potential func-
tion with corresponding gradient F (qk) = −∇U(qk) in Cartesian
map space qk ∈ R2. Following the general approach from [15],
the potential function is composed of an attractive potential and a
repulsive potential. The attractive potential is specified as

Ua(qk, n) =
βa
2
d2n(qk), (5)

where dn(qk) = ‖qk −mn‖ models the Euclidean distance to the
position of the n-th source in the map and βa is a scaling factor.

The conventional PF method assumes that a dedicated goal
position for a specific navigation task is defined by the attrac-
tive potential. In contrast, this study considers active exploration
where the target is the position of a mapped sound source. This
notion is inspired by the fact that acoustic localization in rever-
berant conditions benefits if the acoustic sensors are placed within
the critical distance of the source [21]. Therefore, a greedy goal-
selection policy Ua(qk, n

?) is introduced here, which chooses
the mapped source with the highest uncertainty as goal, according
to n? = argmax

n
H(sn), where H(sn) is the entropy associ-

ated with the n-th source state. The UKF state estimation frame-
work described in Sec. 2.4 assumes a multivariate Gaussian PDF.
Therefore, the required entropies can be computed analytically as
H(sn) =

1
2
log(|2πeΣn,k|), where Σn,k represents the covariance

matrix of the n-th source state posterior.
The definition of the repulsive potential differs from its original

formulation [15] and is adapted to the specific requirements for ac-
tive exploration in this study. Generally, each source position should
apply a repulsive force on the robot to avoid collisions. However,
in the context of active exploration, repulsive potentials can also be
used to steer the robot on specific trajectories that support its local-
ization capabilities. This is especially beneficial for bearing-only
SLAM requiring triangulation to estimate distance. An optimal tra-
jectory for this task is a perfect circle around the source, which main-
tains a constant distance but achieves changes in relative azimuth at
each time-step, which is beneficial for triangulation [7, 8, 9]. There-
fore, a repulsive potential is proposed here, which explicitly con-
siders two aspects: maintaining a safe distance and simultaneously
rewarding circular trajectories around all mapped sources. It is de-
fined as Ur(qk) = Ur1(qk) + Ur2(qk) with

Ur1(qk) =
βr1
2

N∑
n=1


(

1
dn(qk)

− 1
d0

)2
if dn(qk) ≤ d0

0 if dn(qk) > d0
(6)

and

Ur2(qk) =
βr2
2

N∑
n=1

[
1− cos

(
φn(qk)−

π

2

)2]
, (7)

where βr1 and βr2 are scaling factors, d0 is the minimum distance
that should be kept towards a source and φn(qk) represents the rela-
tive angle towards the n-th source in the map. It should be noted that
this kind of repulsive potential is similar to the extended PF method
introduced in [15], where angle-dependent potential functions were
used for improved collision avoidance. In contrast to the attractive
potential, the repulsive potential is computed considering all mapped
sources to avoid collisions according to the safe distance criterion.

3.2. Control signal generation

Control signals are generated based on trajectories that follow the
steepest descent along the gradient of the potential function. Simi-
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Fig. 1: Exemplary trajectory generated by the proposed PF-based
approach. Thick black dots show the ground-truth sound source po-
sitions and crosses surrounded by solid red ellipses represent the es-
timated source positions with corresponding 95% confidence inter-
vals. The uncertainty of the robot’s pose is depicted as the dashed,
blue 95% confidence interval ellipse. The dotted blue line is the
ground-truth robot path, whereas the estimated robot positions are
shown as diamond symbols at each time-step. The initial pose of the
robot was set to r0 = [2 1.5 0]T .

lar to the original formulation of the PF method [15], this gradient
can be expressed as a superposition of attractive and repulsive forces
Fa(qk, n) = −∇Ua(qk, n) and Fr(qk) = −∇Ur(qk), respec-
tively. For the proposed greedy exploration policy, this yields the
attractive force

Fa(qk, n
?) = −βa(qk −mn?) (8)

based on Eq. (5) and the corresponding repulsive forces

Fr1(qk) = βr1

N∑
n=1

{(
1

dn(qk)
− 1

d0

)
qk−mn

d3n(qk)
if dn(qk) ≤ d0

0 if dn(qk) > d0
(9)

and

Fr2(qk) = −βr2
N∑
n=1

sin
(
φn(qk)−

π

2

)
∇φn(qk), (10)

where ∇φn(qk) is the gradient of the inverse tangent function,
which is omitted here due to space limitations (see e.g. [10, Chap. 7]).
Corresponding motion trajectories can directly be obtained from the
superimposed attractive and repulsive forces by following a path of
steepest descent along the gradient towards a minimum.

However, the conventional PF method can be problematic in
cases with several local minima in trajectory space, where the robotic
agent might get stuck in a local minimum without being able to
reach the target position [16]. The modified approach presented here
circumvents this problem, because active exploration is inherently
an online approach which requires constant updates of the poten-
tial functions and their corresponding forces. Therefore, the robotic
agent has to frequently re-plan its trajectory, reducing the risk of get-
ting stuck in a local minimum during exploratory movements.
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Table 1: Monte Carlo simulation results. Localization gross accuracies AL and F1 scores are shown in percentage values between zero and
one, localization fine-errors EL,f and translational pose errors EP,t are given in meters and rotational pose errors EP,r in degrees.

T60 Anechoic 0.5 s 1 s

AL F1 EL,f EP,t EP,r AL F1 EL,f EP,t EP,r AL F1 EL,f EP,t EP,r

IBF [8] 0.79 0.75 0.50 0.31 1.07 0.78 0.70 0.51 0.32 1.13 0.74 0.65 0.49 0.33 1.10
MCE [9] 0.78 0.68 0.52 0.33 1.02 0.73 0.63 0.49 0.33 1.10 0.63 0.57 0.51 0.79 1.17
Proposed 0.86 0.79 0.47 0.31 1.01 0.83 0.75 0.49 0.32 1.02 0.78 0.70 0.47 0.32 1.03

Furthermore, the dependence of the repulsive force on the relative
angles towards all sources in the map results in a smoother opti-
mization surface in trajectory space, compared to the conventional
PF method where this is not explicitly considered. The benefit of
this for conventional path planning has also been reported in [15, 22].
Throughout all experiments that were conducted in this study, prob-
lems resulting from local minima have never been observed. An
example of a trajectory obtained with the proposed approach is de-
picted in Fig. 1.

4. EVALUATION

The performance of the proposed approach was evaluated in simu-
lated reverberant acoustic scenarios. As a baseline, the active explo-
ration methods based on information-based feedback (IBF) [7] and
MCE [9] were chosen for comparison.

4.1. Experimental setup

Monte Carlo simulations were conducted in a simulated “shoebox”-
shaped room of size 5m × 4m × 3m for three different reverber-
ation times T60 of 0 s (anechoic), 0.5 s and 1 s. An array of four
microphones was employed as the acoustic sensor. The microphone
placement on the robotic agent was selected according to the array
configuration of the humanoid robot NAO [23]. For each simulation,
an acoustic scene with three sound sources emitting speech signals
obtained from the GRID audiovisual corpus [24] was rendered using
the image-source method [25]. The positions of the sound sources,
as well as their activity periods were varied during each simulation.
The initial position of the robotic agent was always set to the center
of the room. Each experiment consisted of 250 Monte Carlo simu-
lations. The motion dynamics of the robotic agent were simulated
using the kinematic model (2) introduced in Sec. 2.1 with Gaussian
noise. DoA measurements were obtained using the multiple sig-
nal classification (MUSIC) algorithm [26] for multi-source localiza-
tion. The scaling parameters of the proposed PF approach were set
to βa = 10, βr1 = 1 and βr2 = 1000, respectively. The minimum
distance was set to d0 = 0.5m.

4.2. Evaluation metrics

During each simulation, a source was assumed to be detected when
the estimated position lies within a 1m radius around the corre-
sponding ground-truth position. Localization performance was eval-
uated based on gross accuracyAL and fine-errorEL,f similar to [27],
where gross accuracy is defined as the percentage of detected sources
and fine error measures the average of localization error for all de-
tected sources during a simulation. Additionally, the F1 score is
reported to reflect the effects of false positive source detections. For
evaluating full SLAM performance, translational (EP,t) and rota-
tional (EP,r) pose errors were obtained by averaging the errors be-

Table 2: Average computation time Tc for all evaluated methods
in ms. Experiments were conducted in MATLAB on an INTEL R©

CoreTM i5 machine with 16GB RAM running Ubuntu 16.04.

IBF [8] MCE [9] Proposed

Tc 8.73 57.26 0.09

tween the estimated and ground-truth robot trajectories. To evaluate
the computational performance of all control methods, the required
average computation times Tc were estimated by averaging the time
needed for computing the control input signal at each time-step.

4.3. Results and discussion

The results in Tab. 1 show that the proposed approach outperforms
both baseline methods in gross accuracy and F1 score for all con-
sidered acoustic conditions. The achieved improvements are statis-
tically significant according to a t-test with p < 0.05. Additionally,
the achieved localization fine-error of the proposed approach is con-
siderably lower compared to the baseline in all conditions. It has
to be noted, that for SLAM, gross accuracy and F1 score are the
most important measures, as undetected sources bear a risk for col-
lision. In contrast, the self-localization performance of the robotic
agent does not seem to be affected much by the choice of the control
method. The experiments have shown that it is generally sufficient
for self-localization if one source has been correctly detected and lo-
calized. The DoA estimation via MUSIC which is adopted here, has
been proven to yield accurate estimates even in challenging rever-
berant conditions. This explains the insignificant differences in pose
error between all methods.

Tab. 2 shows that the proposed method outperforms both base-
line methods in terms of the required computation time. This can
be explained by the fact that computationally expensive predictions
or Monte Carlo simulations are not required for generating control
signals for the next time-step.

5. CONCLUSION

This study proposed an active exploration strategy based on the po-
tential field method for acoustic SLAM. The bearing-only problem
arising from the use of DoA measurements was solved by a state-
space model based on the inverse depth parametrization in a recur-
sive Bayesian estimation framework using an unscented Kalman fil-
ter. An experimental evaluation in simulated acoustic conditions has
shown that the proposed approach clearly outperforms recently in-
troduced methods for this task in terms of acoustic scene mapping
performance and simultaneously leads to a greatly reduced compu-
tational complexity. This makes the proposed approach especially
appealing for real-time applications on physical robotic systems.
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