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ABSTRACT

Despite attracting significant research efforts, the problem of source
localization in noisy and reverberant environments remains chal-
lenging. Novel learning-based methods attempt to solve the prob-
lem by modelling the acoustic environment from the observed data.
Typically, appropriate feature vectors are defined, and then used for
constructing a model, which maps the extracted features to the cor-
responding source positions. In this paper, we focus on localizing
a source using a distributed network with several arrays of unidi-
rectional microphones. We introduce new feature vectors, which
utilize the special characteristic of unidirectional microphones, re-
ceiving different parts of the reverberated speech. The new features
are computed locally for each array, using the power-ratios between
its measured signals, and are used to construct a local model, rep-
resenting the unique view point of each array. The models of the
different arrays, conveying distinct and complementing structures,
are merged by a Multi-View Gaussian Process (MVGP), mapping
the new features to their corresponding source positions. Based on
this unifying model, a Bayesian estimator is derived, exploiting the
relations conveyed by the covariance terms of the MVGP. The re-
sulting localizer is shown to be robust to noise and reverberation,
utilizing a computationally efficient feature extraction.

Index Terms— source localization, unidirectional micro-
phones, supervised learning, Gaussian process

1. INTRODUCTION

Source localization is a core problem in speech processing, with var-
ious applications, such as teleconferencing systems [1], robot audi-
tion [2], speech enhancement and separation [3], just to name a few.
Numerous methods were proposed over the years based on the spa-
tial information inferred from the measurements of several micro-
phones [4]. A substantial number of methods are based on time dif-
ference of arrival (TDOA) estimates between pairs of microphones,
which are combined to perform the actual localization [5–7]. Some
localization schemes utilize beamforming techniques [8] or subspace
analysis [9–13]. Other existing approches incorporate spatial spar-
sity considerations [14, 15].

Most of the above methods demonstrate limited performance
in adverse conditions, i.e., in the presence of noise and reverbera-
tions. These complex scenarios are difficult to analyse, and accurate
definitive geometrical or physical models do not always exist. Novel
learning based methods tackle the problem by either supervised or

1 This work is supported by the Adams Foundation of the Israel
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unsupervised techniques, aiming to learn the spatial characteristics
of the acoustic environment directly from the data [16–19].

Recently, we have presented several localization and tracking al-
gorithms based on semi-supervised learning [20–23]. In these algo-
rithms the first step is to extract features from the measured signals
in several microphones, representing the acoustic fingerprint of each
source position. The extracted features are then mapped to the corre-
sponding source positions using manifold-regularized optimization
techniques [21], as well as using Bayesian regression with Gaus-
sian processes [22,23]. Typically the high-dimensional features used
are based on relative transfer function (RTF) estimates, representing
the corresponding acoustic channels. Localization results, compared
to well-known TDOA-based localization schemes [5, 24], show su-
periority of the proposed methods in moderate and high reverbera-
tion conditions, whereas in low reverberations the TDOA-based ap-
proaches are slightly preferable [21, 22]. Moreover, robustness to
background noise was not explicitly addressed.

In this paper, we deal with distributed arrays of unidirectional
microphones. We propose new features, specially tailored to work
with unidirectional microphones, that can serve as a simple, yet pow-
erful alternative to the intricate high-dimensional RTFs. The new
features are based on ratios between temporal energies measured
by the different microphones in each array [25]. We show that the
ratio-based features are advantageous over the RTF-based features
for their low-computational complexity as well as for their better lo-
calization accuracy in low reverberation conditions or in the presence
of high noise levels.

The outline of the proposed algorithm is as follows. In the first
step, the features are computed for several spatially distributed mi-
crophone arrays. Each array is characterized by a unique acoustic
fingerprint, representing its local view point. The different finger-
prints are then incorporated into a definition of a Multi-View Gaus-
sian Process (MVGP), mapping the features of the different arrays
to their corresponding source positions. In the last step, a Bayesian
localizer is derived, yielding an estimation based on the relations de-
fined by the MVGP.

2. PROBLEM FORMULATION

We consider a single source located at position p = [px, py, pz]T

in a reverberant enclosure. The source signal s(t) is contaminated
by noise, and is measured by M distributed nodes, each of which
consists of an array with J microphones. The measured signal in the
jth microphone of the mth array is given by:

ymj (t,p) = hm
j (t,p) ∗ s(t) + vmj (t) (1)
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where hm
j (t,p) is the acoustic impulse response (AIR) relating the

source at position p and the jth microphone in the mth node, and
vmj (t) is the corresponding noise signal. In this paper, we assume
that each microphone array comprises unidirectional elements, each
directed at a different angle. In the sequel, we utilize the spatial
characteristic of this type of array to extract simple features, which
vary smoothly with respect to the source position.

Suppose we are given a training set of N prerecorded measure-
ments in various known source positions {p̄n}Nn=1 in the enclosure
of interest. The measured training positions deviate from the true
source positions by a white Gaussian noise with a small variance σ2,
representing calibration inaccuracies.

Our goal is to locate the source, associated with a new set of
microphone measurements (1), based on a model inferred from the
training set. For this purpose, we first extract appropriate features
from the measured signals (1), which contain the relevant informa-
tion regarding the varying source position. Then, we perform an
interpolation of training positions with weights that are proportional
to distances between the computed features. In Section 3, we discuss
the feature extraction process, performed for each individual node.
A unifying model, fusing the information inferred from the features
of the different nodes, is presented in Section 4. Based on this model,
a supervised Bayesian localizer is proposed in Section 5.

3. FEATURE EXTRACTION

The process of feature extraction is of great importance in machine
learning and data mining algorithms [26]. The idea is to extract in-
formative features from the raw data, which will best serve the sub-
sequent learning task. Recently, we have presented several methods
for source localization and tracking [20–23], all of which utilize fea-
tures based on the relative transfer function (RTF), which is defined
as the ratio between the acoustic transfer functions of two adjacent
microphones [27]. The RTFs (concatenated for a certain frequency
band) have a complex high-dimensional structure, representing the
various reflections from the different surfaces defining the enclosure.
However, when the acoustic conditions are approximately fixed, the
variations of the RTFs are mainly attributed to the different source
positions. Therefore, in such scenarios, the RTFs admit a compact
representation on a low-dimensional manifold.

In this paper, we propose to use new feature vectors, utilizing
the unique characteristics of unidirectional arrays. Directional mi-
crophones, pointed to different angles, perceive different parts of
the reflections, depending on their radiation pattern and orientation.
For example, consider an array with one element directed towards
the source and another element oriented in the opposite direction.
The front microphone receives both the direct signal and the re-
verberant part, whereas the opposite microphone receives only the
reflections. Assuming that the reverberations can be modeled as a
diffuse sound field, propogating incoherntly in all directions, they
are preceived similarly by both elements. Based on this obsrvation,
in [25], it was proposed to utilize this type of architecture for re-
verberated speech quality assessment. It was shown that the energy
ratio between the direct microphone and the opposite microphone
can be used to blindly estimate the direct-to-reverberant energy ra-
tio (DRR). In addition, experimental results demonstrated that the
computed ratio is monotonically varying with respect to the source
distance from the microphone. Power ratios based on measurments
of directional sensors are commonly used for bearing estimation in
radar [28] and sonar [29] applications.

Motivated by the analysis and observations of [25], we define
a new feature vector based on the power ratios between the micro-

phones in each node. The power ratio between the ith and the jth
microphones of the mth node is evaluated by:

Rm
ij (t,p) =

Sm
i (t,p)

Sm
j (t,p)

(2)

where the powers Sm
i (t,p), i ∈ {1, . . . , J}, m ∈ {1, . . . ,M} are

computed over short time-periods of length T :

Sm
i (t,p) =

1

T

∫ t

t−T

(ymi (τ,p))2dτ (3)

where T is set to the range 20 − 40ms to correspond to the speech
quasi-stationarity time scale. Alternatively, the powers can be com-
puted using an exponential averaging with parameter α:

Sm
i (t,p) = (1− α)Sm

i (t− Ts,p) + α(ymj (t,p))2. (4)

where Ts is the sampling period. The value of α should be approxi-
mately set to Ts/T .

Let Rm
ij (p) denote the average value of (2) over the observation

interval. In the average ratio, we include only time periods with
positive derivatives of the power of the first microphone, which are
assumed to contain the direct part. Let L denote the set of L pairs of
indices from {1, . . . , J}, withL =

(
J
2

)
. We define the feature vector

rm of size L × 1 as a concatenation of the set of power ratios of
the mth node {10 log10

(
Rm

ij (p)
)
}(i,j)∈L, computed in logarithmic

scale.
In the training phase, we compute the features (2) for each train-

ing position p̄n and form the set {r̄mn }M,N
m,n=1. In the test phase, we

compute the feature vectors {rmt }Mm=1 for each new arriving mea-
surement from an unknown position pt. For notational clarification,
we emphasize that the training positions and features are marked by
bars, whereas test positions and features are marked by subscript t.

Compared to the RTFs, which contain a large amount of param-
eters to be estimated, the ratio-based features are low-dimensional
and efficient to compute. Moreover, we show in Section 6 that they
are advantageous in acoustic scenarios with low reverberations, as
well as in noisy scenarios with high levels of background noise. In
fact, the ratio-based features are coarser compared to the detailed
high-dimensional RTFs. Thus, they are more suitable to capture the
variability of low reverberation acoustic scenarios, where the high-
dimensional RTFs contain redundant information. In addition, such
coarse features are preferable in noisy scenarios, where the estima-
tion of the detained RTF-based features, consisting of a large number
of parameters, yields large errors.

4. MULTI-VIEW GAUSSIAN PROCESS

Based on the defined features, we build a local model for each node
describing a map of its set of features to the corresponding source
positions. We show that the models of the different nodes represent
different view points, and define a unifying mapping tying the dif-
ferent views together [22].

Assuming that the nodes are spatially distributed in the enclosure
of interest, the features of each node have unique patterns, repre-
senting different perspectives on the acoustic scene. To build a local
model, we construct a graph Gm for each node m. The graph ver-
tices are defined by the training positions, and the edges connecting
them are weighted according to distances between the corresponding
features. The weights are computed using a pairwise kernel function.
Here, a Laplacian (exponential) kernel is employed:

km (r̄mn , r̄
m
l ) = exp

{
−‖r̄

m
n − r̄ml ‖2
εm

}
(5)
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where ‖·‖2 denotes the l2 norm, and εm is a scaling parameter. Note
that we use a Laplacian kernel rather than the typical Gaussian ker-
nel, since it decays slower, hence more appropriate for the usage of
simplified low-dimensional features, which are smoother and more
regular with respect to the source position.

The relations induced by the kernel (5) represent the local model
of the mth node. We would like to merge the different views pre-
sented by the nodes, and then relate the inferred relations among the
features to the relations between the corresponding source positions.

We define a zero-mean Gaussian process fm ∼ GP(0, k̃m)
which attaches each feature r̄mn with the corresponding source posi-
tion fm

n ≡ fm(r̄mn ). Note that fm is a scalar function representing
either x, y or z coordinate of the source position. Since the same
derivation applies to each coordinate separately, the coordinate sub-
script is omitted. The covariance of the process is defined by:

cov(fm
n , f

m
l ) ≡ k̃m(r̄mn , r̄

m
l ) =

N∑
w=1

km(r̄mn , r̄
m
w )km(r̄ml , r̄

m
w ).

(6)
We should emphasize the difference between the kernels k and k̃,
defined in (5) and in (6), respectively. While the kernel k defines
proximity by measuring the pairwise relations between samples, the
kernel k̃ also examines their relations to the given training samples.
When two samples convey similar connections to the other training
samples, it indicates that they themselves are closely related, and
vice versa. The covariance between the processes of different nodes,
m and g, is defined in a similar way by:

cov(fm
n , f

g
l ) =

N∑
w=1

km(r̄mn , r̄
m
w )kg(r̄gl , r̄

g
w). (7)

Here, the intra-relations within the mth and gth nodes are evaluated
separately by the kernels km and kg , respectively, and then they are
composed together in (7).

The different perspectives introduced by the different nodes are
fused by the Multi-View Gaussian Process (MVGP) f , defined as
the average process of {fm}Mm=1:

fn ≡ f (r̄n) =
1

M

(
f1(r̄1n)+ f2(r̄2n)+ . . .+ fM(r̄Mn )) . (8)

where r̄n = [(r̄1n)T , . . . , (r̄Mn )T ]T . The MVGP is zero-mean and
its covariance function is given by:

cov(fn, fl) =
1

M2
cov

(
M∑

m=1

fm
n ,

M∑
g=1

fg
l

)

=
1

M2

M∑
m,g=1

cov(fm
n , f

g
l ). (9)

Substituting (6) and (7) into (9) yields:

cov(fn, fl) ≡ k̃(r̄n, r̄l)

=
1

M2

M∑
m,g=1

N∑
w=1

km(r̄mn , r̄
m
w )kg(r̄gl , r̄

g
w). (10)

The covariance of the process f aggregates the pairwise relations be-
tween each two nodes, enhancing observations common to pairs of
nodes and ignoring inconsistent observations. It was shown in [30]
that such covariance terms enhance the dominant parameters gov-
erning the data, which, in our case, correspond to the varying source
positions.
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Fig. 1. Setup: The black ‘x’ marks denote the microphone positions,
and the red ‘*’ marks denote the training positions.

5. LOCALIZATION ALGORITHM

Based on the defined model we formulate a Bayesian localizer, ap-
plying a regression between the given training positions and the co-
variance terms of the MVGP.

In the test phase, we receive new measurements of a source lo-
cated in an unknown position pt. Here as well, we analyse each
coordinate (x, y or z) separately, hence a scalar notation is used.
Our goal is then to estimate the position of the source based on the
extracted features rt = [(r1t )T , . . . , (rMt )T ]T . The position of a
new test point can be considered as a sample of the defined MVGP,
i.e. ft = f(rt). Therefore, the current position and all the train-
ing positions pN = [p̄1, . . . , p̄N ]T are jointly Gaussian, and their
conditional distribution is given by:[

pN

pt

]
∼ N

(
0N+1,

[
Σ̃N + σ2IN Σ̃N t

Σ̃T
N t Σ̃t

])
(11)

where IN is the unit matrix of size N ×N and

(Σ̃N )nl = k̃(r̄n, r̄l), 1 ≤ l, n ≤ N

(Σ̃N t)n = k̃(r̄n, rt), 1 ≤ n ≤ N

Σ̃t = k̃(rt, rt).

Accordingly, the minimum mean squared error (MMSE) estimator
of pt is given by its conditional mean, given all the training positions:

p̂t = Σ̃T
N t

(
Σ̃N + σ2IN

)−1

pN . (12)

6. SIMULATION RESULTS

The ability of the proposed estimator to locate the source is examined
in this section. We simulate a room of size 6× 5× 4m with M = 2
nodes, each of which consists of J = 4 cardioid microphones, point-
ing in perpendicular directions. The AIRs are simulated using an
efficient implementation [31] of the image method [32]. The source
positions are assumed to be confined to a rectangular region of size
2 × 2m, with a fixed height of 2m. The room setup and the micro-
phone constellation are illustrated in Fig. 1.

The training set is formed by a grid of N = 25 positions with
a resolution of 0.5m between adjacent positions. We set the vari-
ance of the labelling errors to σ2 = 0.001. The performance is
averaged over 100 test positions in the designated region. The mea-
sured signals (both training and test), are formed by convoluting 2.5s
long TIMIT sentences, with the corresponding simulated AIRs, with
the addition of a white Gaussian noise. The sampling rate is set to
fs = 16kHz.
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Fig. 2. Relations induced by the kernel defined over the features of a
specific node. The colors correspond to the kernel values computed
by (5) between the middle point of the rectangular region and all
other training points. The ‘x’ marks denote the microphone positions
of the associated node.

A demonstration of the local models formed by the two nodes is
given in Fig. 2. The colors correspond to the kernel values computed
by (5) between the middle training point of the rectangular region
and all other training points. The ‘x’ marks denote the microphone
positions of the corresponding node. It can be seen that indeed each
node exhibits a unique spatial map.

We compare the localization results of the proposed estima-
tor (12), with features defined based on power ratios (2), and with
features based on RTF values [22]. The power ratios are computed
by (2) with T = 32ms, and averaged across time to form the vec-
tors r1, r2 ∈ RL, with L =

(
4
2

)
= 6. The RTFs consist of 100

frequency bins (0 − 0.8kHz), estimated using Welch’s method with
windows of 2048 samples and 75% overlap. The RTFs are computed
between the front microphone j = 1 and each of the other micro-
phones j = {2, 3, 4} for each node, constituting a concatenated fea-
ture vectors with 3 · 100 = 300 elements each. As a reference, we
also compare to nearest-neighbour estimator with ratio-based fea-
tures. Comparisons with the RTF-based features to other methods
were conducted in [22].

The root mean squared errors (RMSEs) of the algorithms, aver-
aged over 100 trials, are presented in Fig. 3. Figure 3(a) depicts the
results for different reverberation times ranging between 150ms and
700ms, with white Gaussian noise with signal to noise ratio (SNR)
fixed to 20dB. Figure 3(b) illustrates the results for different SNR
levels ranging between 0dB and 20dB, with reverberation time fixed
to 300ms.

We observe that the nearest-neighbor estimator is inferior with
respect to the proposed localizer in nearly every scenario (12). For
high SNR conditions (20dB), the RTF-based and the ratio-based im-
plementations yield comparable results, with a slight advantage for
the ratio-based localizer in low reverberation, and for the RTF-based
localizer in high reverberation. Regarding noise levels, it can be seen
that the ratio-based localizer is more robust to noise, showing supe-
riority for high noise levels.

The ratio-based features and the RTF-based features represent
different acoustic fingerprints, both encoding the variations in the
corresponding source positions. Comparing between the two, the
ratio-based features represent a low-dimensional coarse version of
the high-dimensional RTF-based features. Due to their simplified
structure, the ratio-based features are specifically tailored to simple
acoustic scenarios, characterized by low reverberations. Conversely,
in these scenarios, the RTF-based features have a redundant repre-
sentation. Due to their redundancy, the process of mapping the RTFs
to source positions becomes unnecessarily intricate, leading to infe-
rior localization results. Similarly, when noise level is high, feature
estimation is less accurate, and therefore the coarse ratio-based fea-
tures, which depend on fewer parameters, are more robust. However,
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Fig. 3. RMSE obtained (a) for different reverberation times between
150ms to 700ms (SNR=20dB), and for different SNR levels between
0dB to 20dB (T60 = 300ms).

in high reverberations and high SNR conditions the RTF-based fea-
tures better capture the complexity of the acoustic scenario, hence
provide better localization results compared to the ratio-based fea-
tures.

Regarding computational complexity, the ratio-based features
are much simpler to compute compared to the RTF-based features.
In this simulation, using a Matlab implementation on a standard PC
(CPU Intel Core2 Quad 3.7 GHz, RAM 8 GB), the computation time
of the ratio-based features and of the RTF-based features for a single
point takes on average 7.5ms and 197ms, respectively. We conclude
that the proposed ratio-based features are more efficient and are ad-
vantageous in low reverberations or low SNR conditions.

7. CONCLUSIONS

A robust source localization algorithm is derived based on compu-
tationally efficient features. The new features are based on power
ratios evaluated between several unidirectional sensors in an array of
microphones. It is shown that the features computed for each array
reveal unique patterns, representing different view points. Merging
the different perspectives of several arrays is carried out by defining
a MVGP, whose covariance function aggregates relations observed
by pairs of nodes. The derived Bayesian estimator performs a regres-
sion over training positions of prerecorded measurements, weighted
by the covariance terms of the MVGP. The algorithm efficiency
and robustness is demonstrated under noisy and reverberation con-
ditions. Localization results demonstrate the advantage of the pro-
posed features in low reverberation acoustic environments or in the
presence of high background noises. These results indicate that the
proposed supervised localization scheme can be generally applied to
different type of features, extracted from the raw data. The different
features represent unique acoustic fingerprints, encoding the corre-
sponding source positions. The stage of feature extraction is of great
importance to the localization results, and should be determined in
correspondence to the environmental and acoustical conditions.
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