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ABSTRACT

Frequency and location dependent components in the speech sig-
nal can be decoupled by signal processing in the spherical harmonic
domain. In this paper, a sparsity based method for joint source lo-
calization and separation method using online dictionary learning
is proposed. Conventional sparsity based methods utilize an over-
complete dictionary to find a sparse linear combination of dictio-
nary atoms. Online dictionary learning discussed herein, addresses
the joint localization and separation problem by learning the dic-
tionary atoms based on stochastic approximation. The location de-
pendent terms present in the dictionary atoms at various frequencies
are then clustered to find a robust estimate of number of sources
and their locations. Using these estimates, the sources are separated
from the mixture. Experiments on speech source localization and
separation are conducted at various SNR. Performance evaluation
scores like RMSE, log spectral distance and perceptual mean opinion
scores indicate reasonable improvement over conventional methods
for speech source separation.

Index Terms— Source Separation, Source Localization, Spher-
ical Harmonics, Online Dictionary Learning, Sparse Coding

1. INTRODUCTION

Source localization and separation plays an important role in several
applications such as distant speech recognition, music information
retrieval [1], automatic camera steering [2] and hence it is an active
area of research. Localization and separation in presence of noise
is a challenging task. Spherical microphone array(SMA) [3] facil-
itates signal processing in spherical harmonic domain by capturing
the spherical variation of acoustic field. Spherical harmonic domain
facilitates the decomposition of received signal into frequency de-
pendent component and location dependent components [4]. This
inturn results in the location information available from different
frequency components and thus helps in getting a robust estimate
of source locations. In this work, we address the problem of source
localization and separation by learning the dictionary atoms online
without using an over complete dictionary.

A wide range of methods for localization and separation have
been developed in the past few decades. In the instantaneous mixing
model [5] [6], separation is carried out in time domain by assuming
an additive model. Frequency domain separation methods are based
on convolutive mixing of sources. Independent Component Analysis
is one popular method for solving this problem. Probabilistic source
separation methods [7] address this issue by assuming the mixture
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coefficients to be non-negative and then utilize Non-negative Ma-
trix factorization(NMF). Time frequency masking [8] [9] methods
exploit time-frequency sparsity for source separation. It utilizes the
knowledge of steering vectors for a set of discrete locations and im-
poses sparsity for localization and separation of sources. On the
other hand learning based approaches for source localization have
been very effective in adverse environments.

Learning approaches are able to localize only single source and
are not effective for multi source environments. Some methods per-
form well but are computationally very complex [10] and are not
suitable for a real time source separation. The number of sources
need to be known apriori in these methods. The contribution of this
work is two fold. It proposes a stochastic online learning of the dic-
tionary atoms at each individual frequency. The proposed method
also extracts the location dependent components in the dictionary
atoms and cluster them to find the number of sources and their steer-
ing vectors to jointly localize and separate the sources.

The rest of the paper is organized as follows. Section 2 intro-
duces the data model spherical harmonics domain. Joint source lo-
calization and separation using stochastic online dictionary learning
is described in section 3. Performance evaluation is discussed in
section 4. Section 5 concludes the paper.

2. MODELING AN ACOUSTIC SCENE IN SPHERICAL
HARMONIC DOMAIN

Consider an acoustic scene with L point sources and an SMA with
I microphones. The location of sources is indicated by Ψl for l =
1, 2, 3......L. Location of microphones is indicated by Ωi for i =
1, 2, 3.......I . The following data model captures the pressure ob-
served at the microphones in terms of microphone and source loca-
tions, signal strength and noise at microphones.

p(k) = V(k,Ψ)s(k) + n(k) (1)

where k is wave number, s(k) is source strength vector and n(k) is
noise vector and V(k,Ψ) is steering matrix containing the steering
vectors corresponding to all the source locations. The position of lth

source can be represented as Ψl =(θl, φl) and corresponding wave
vector is kl=(klcos(φl)sin(θl), klsin(φl)sin(θl), klcos(θl))

T ,
where k = ‖kl‖ = 2πf

c
and f is the frequency associated to wave

number. The I × L steering matrix V(k,Ψ) employs spatial char-
acteristics of the array and represents the room impulse response, it
can be expressed as shown below:

V(k,Ψ) = [v(k,Ψ1), . . . ,v(k,ΨL)] , (2)

where v(k,Ψl) =
[
ek

T
l r1 , ..., ek

T
l rI
]T

is the I×1 steering vector

corresponding to lth source with each element in the steering vector
corresponds to an unit plane wave.
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Spherical harmonics facilitate decomposition of steering vector
into three components, first dependent only on the microphone lo-
cations, second dependent only on the source locations and third
dependent only on the frequency and radius of the spherical micro-
phone array. Thus, expanding the steering matrix using spherical
harmonics [11], Equation 1 can be rewritten as

p(k) = Y(Ω)B(kr)YH(Ψ)s(k) + n(k) (3)

Y(Ω) ∈ CI×(N+1)2 ,YH(Ψ) ∈ C(N+1)2×L are the spherical
harmonics matrices with angular positions corresponding to mi-
crophones and sources respectively and they can be expressed as
follows.

YH(Ψ) =
[
yH1 ,y

H
2 , . . . ,y

H
L

]
,

yl = [Y 0
0 (Ψl), Y

−1
1 (Ψl), . . . , Y

N
N (Ψl)],

where Y mn is spherical harmonics function of order n and degree m
is given by

Y mn (θ, φ) =

√
(2n+ 1)(n−m)!

4π(n+m)!
Pmn (cosθ)ejmφ,

where Pmn is the associated Legendre polynomial. B(kr) is a (N +
1)2 × (N + 1)2 diagonal matrix with each element corresponding
to the mode strength bn(kr) for a rigid spherical microphone array
[12] and the matrix is defined as

B(kr) = diag(b0(kr), b1(kr), b1(kr), . . . , bN (kr)),

bn(kr) = 4πjn
[
jn(kr)− jn

′(kr)

hn′(kr)
hn(kr)

]
,

where jn and hn denote the spherical Bessel and Hankel functions
respectively, j

′
n and h

′
n are their corresponding derivatives. The

transformation between spatial and spherical harmonics domain can
be done using spherical harmonics matrix as

pnm(k) = YH(Ω)p(k) (4)

where pnm(k) is the observation vector in spherical harmonics do-
main. Using the matrix formulation of orthogonality of spherical
harmonics and equation 3, data model takes the following form.

pnm(k) = B(kr)YH(Ψ)s(k) + YH(Ω)n(k) (5)

The signal term in Equation 5 becomes independent of fre-
quency by left multiplying it with B−1(kr). For notational conve-
nience lets use the following representation.

xnm(k) = B−1(kr)pnm(k) (6)

From Equations 5 and 6, the final data model [13] [14] takes the
following form.

xnm(k) = YH(Ψ)s(k) + z(k) (7)

where z(k) is termed as spherical harmonic noise and defined as
z(k) = B−1(kr)YH(Ω)n(k)

3. STOCHASTIC ONLINE DICTIONARY LEARNING FOR
SPEECH SOURCE LOCALIZATION AND SEPARATION

Sparsity based methods [15] are very often used for joint localiza-
tion and separation but the main disadvantage of them is that they
require an over complete dictionary with the atoms corresponding to
all the possible locations. In case of three dimensional localization,
as there are large number of possible locations, an over complete
dictionary would be very huge and the computational complexity
becomes very high. This also restricts that the environment to be
fully known as it needs dictionary atoms for all locations. In on-
line dictionary learning [16], dictionary atoms are learned without
the necessity of an over complete dictionary. Problem formulation
in spherical harmonic domain is first provided and then online dic-
tionary learning for localization and separation is explained.

3.1. Problem Formulation

Consider the data model presented in Equation 7. For ease of nota-
tion, represent xnm(k) at frame t as xt(k). Given an observation
xt(k) and a dictionary D(k), the linear combination of the dictio-
nary atoms given by α can found by solving an optimization problem
called as l1 sparse coding problem as given below.

α∗ = argmin
α

‖xt(k)−D(k)α‖22 + λ‖α‖1 (8)

As the dictionary D(k) is also unknown, cost function need to be
framed as a function of dictionary D(k). Given a set of signals, an
empirical cost function can be framed as follows.

fT (D(k)) =
1

T

T∑
t=1

[
‖xt(k)−D(k)α‖22 + λ‖α‖1

]
(9)

where the summation is done over a loss function which is small
if D(k) is good at representing the observations. The problem of
minimizing the empirical cost fT (D(k)) is that it is not convex with
respect to the dictionary D. It can be rewritten as a joint optimiza-
tion problem with respect to both the dictionary D(k) and the linear
combinations α1, ...., αT as given below.

min
D(k),α

‖xt(k)−D(k)α‖22 + λ‖α‖1 (10)

This joint optimization problem is not convex, but it is convex with
respect to each of the two variables D(k) and αwhen the other one is
fixed. One approach that we followed for solving this optimization
problem is discussed in the ensuing sections.

3.2. Solution Using Stochastic Online Dictionary Learning

One way of solving this optimization problem is to alternate between
the two variables i.e minimizing the cost function with respect to one
variable which keeping the other fixed. But the general interest is in
minimizing the expected cost rather than the empirical cost. Hence,
the online learning [16] discussed here solves the above mentioned
optimization problem based on stochastic approximations, process-
ing one sample at a time.

At any instant t, we are left with observations at that instant
xt(k) and the estimated dictionary in the previous instant which is
D

(k)
t−1. An optimization problem for this objective can be framed as

follows which is convex and hence can be easily solved.

αt = min
α

‖xt(k)−D
(k)
t−1α‖

2
2 + λ‖α‖1 (11)
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Algorithm 1 Algorithm for speech source localization and separa-
tion using stochastic online dictionary learning

Require: Observations p(t) ∈ RI×1, maximum number of sources
M , initial dictionary D

(k)
0 ∈ C(N+1)2×M , the non-negative

regularization parameter λ, parameter β for dictionary purging
and the range of frequencies k.

1: Short Term Fourier Transform (STFT) applied to p(t) resulting
in p(k)

2: Transformation from spatial domain into spherical harmonics
domain by

pnm(k) = YH(Ω)p(k) (12)

3: For steering vectors to be independent of frequency

xnm(k) = B−1(kr)pnm(k) (13)

4: For ease of notation, represent xnm(k) at frame t as xt(k).
5: for all k do
6: Initialization : A← 0, B← 0
7: for t =1 to T do :
8: Solve l1 sparse coding problem using Numerical meth-

ods
αt = min

α
‖xt(k)−D

(k)
t−1α‖

2
2 + λ‖α‖1 (14)

9: Update the matrices A and B

At ← At−1 + αtα
T
t (15)

Bt ← Bt−1 + xt(k)αTt (16)

10: Dictionary update :
11: repeat
12: for j do=1 to M
13:

uj ←
1

Ajj
(bj −D

(k)
t−1aj) + dj (17)

14:
dj ←

uj
norm(uj)

(18)

15: end for
16: until Convergence
17: end for
18: Purge dictionary atoms that do not contribute to the observa-

tion sufficiently. Indicated by β
19: end for
20: Collect D(k) ∀ k
21: for i=1 to M do
22: Dictionary atoms are clustered using k-means algorithm
23: Compute Intra and Inter cluster variance
24: end for
25: Plot and find number of clusters L and their cluster means
26: Perform Gram-Schmidt orthogonalization on the cluster means

to output optimal dictionary atoms Dopt

27: The resulting dictionary atoms directly correspond to the steer-
ing vectors of the source locations and hence, location estimates
are readily available.

28: Separate the speech sources using least squares by using location
estimates

min
st(k)

‖xt(k)−Doptst(k)‖22 (19)

29: Inverse STFT is applied on st(k) to get signal into time domain
and thus speech separation is complete

3.2.1. Stochastic Online Dictionary Learning

The problem of finding the optimal dictionary D can be framed as
an optimization problem by minimizing the cost function shown in
equation 9. Equivalently, the problem can be framed as follows.

D
(k)
t = argmin

D

[
1

2
Tr(DTDAt)− Tr(DTBt)

]
(20)

where At = At−1 + αtα
T
t and Bt = Bt−1 + xtα

T
t . The dictio-

nary D is updated from its previous estimate using block coordinate
descent method. Since the algorithm uses Dt−1 as its starting point
for computing Dt, a single iteration has been empirically found to
be enough. Complete algorithm is explained in the ensuing sections.

Dictionary atoms are learnt for each of the frequency. Equation
7 indicates that the dictionary atoms are independent of frequency.
Frequency smoothing [17] is done by means of k-means clustering
so as to find out the correct number of sources as well as the robust
estimates of source locations as the only information available is the
maximum number of sources and not the exact number of sources.
The correct number of clusters is found by comparing the values of
inter and intra cluster variances. These dictionary atoms are noth-
ing but the steering vectors corresponding to the source locations
and hence, location estimates are readily available from dictionary
atoms.

3.2.2. G-S Orthogonalization for Speech Separation

Gram-Schmidt orthogonalization is performed on the cluster means
to get Dopt. Speech sources are separated using least squares by
using the optimal dictionary atoms Dopt. Optimization problem in
this case is as mentioned below.

argmin
st(k)

‖xt(k)−Doptst(k)‖22 (21)

This has a closed form of solution and a solution can be readily
found. Solution for this is problem is the set of speech signals in
frequency domain. Hence, inverse STFT is applied on st(k) to get
signal into time domain and thus speech separation is complete.

4. PERFORMANCE EVALUATION

In this section, the proposed method of speech source localization
and separation is evaluated using a spherical microphone array. Per-
formance analysis based on measures such as Root Mean Square Er-
ror(RMSE), Log Spectral Distance(LSD) and perceptual mean opin-
ion scores (PESQ) is also presented.

4.1. Experimental Conditions

For these experiments, we utilize the data from GRID corpus [18].
A rigid spherical microphone array [19] of radius 15 cm and con-
sisting of 50 microphones is used. The order of the spherical micro-
phone array [20] used is N=6. The dictionary is initialized randomly
and the linear combinations α are found by solving the convex op-
timization problem using numerical methods [21]. Experiments are
conducted for 2 speaker scenario. Maximum number of speakers as-
sumed is 10. Dictionary atoms are purged so that the atoms which
contribute at least 30 percent of the total energy are retained. Sensor
noise is assumed to be additive white uncorrelated Gaussian noise.
The parameters for the algorithm are the non-negative regularization
parameter λ and the dictionary purging parameter β. Regarding the
dictionary purging parameter β, it purges the dictionary so that the
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atoms that do not contribute significantly in representation of the ob-
served signal are not considered. β value that is found empirically
to be suitable is 30 percent. Regarding the regularization parameter
λ, it indicates a balance between the sparsity of the sources and how
close the observed signal is to the combination of separated signals.

4.2. Joint Localization and Separation Experiments

In this section, the performance analysis is carried out based on
certain measures. The proposed method is called as ODL(online
dictionary learning) method. For analyzing speech source separa-
tion, spectrographic analysis and objective evaluation using LSD and
PESQ is carried out. For analyzing performance of source localiza-
tion, RMSE analysis is done by varying SNR and the angular sepa-
ration between the sources one at a time.

4.2.1. Spectrographic Analysis

One way of performance analysis in case of speech source separa-
tion is by analyzing the spectrograms of the original and the recon-
structed signals. Separation was carried out for two sources located
with an angular difference of 20 degrees. In the figure 1, spectro-
grams of the original signal and the separated signals are presented
and it can be seen that the distortions are minimal in the recon-
structed signals.
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Fig. 1: Spectrographic analysis of the sparsity based method. (a)-(b)
spectrogram of the original Source 1 and 2. (c)-(d) spectrogram of
the separated Source 1 and 2.

4.2.2. RMSE Analysis

The efficiency of the proposed method is also evaluated using RMSE
with respect to localization. RMSE of source localization for the
proposed ODL method is compared to MUltiple SIgnal Classifica-
tion(MUSIC) method. RMSE analysis for source location estimation
is illustrated in Figure 2. In this analysis, we observe that error in lo-
calization using the ODL method is better than the standard methods
of source localization.

RMSE analysis is also performed with respect to the angular
separation between the sources in a two speaker scenario. The angu-
lar separation is varied from 10 to 50 degrees in steps of 10 degrees
and RMSE is calculated with respect to localization. This experi-
ment is carried out at an SNR of 10 dB. It can be seen from the
figure 3 that as the angular separation increases between the sources,
the localization performance improves.
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Fig. 2: Variation of RMSE with SNR for proposed sparsity based
method
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Fig. 3: Variation of RMSE with angular distance between the
sources

4.2.3. Objective Evaluation of Speech Source Separation

Objective evaluation of speech source separation is carried out using
LSD and PESQ by comparing the clean speech signals and the re-
constructed speech signals. Table 1 illustrates the performance com-
parison of the proposed method to the standard methods existing for
speech separation [22]. An improvement in the performance is ob-
served with the proposed method.

SNR (dB)

Method 3 5 10
LSD PESQ LSD PESQ LSD PESQ

ODL 1.32 2.45 1.09 2.32 1.19 2.69
ICA 1.39 1.85 1.23 2.27 1.31 2.22

Table 1: Objective evaluation of source separation using
ODL(Online Dictionary Learning) and ICA(Independent Compo-
nent Analysis) using LSD and PESQ.

5. CONCLUSION

In this work, a novel method for speech source localization and sep-
aration based on stochastic online dictionary learning is proposed.
Performance analysis is carried out using spectrogram analysis,
RMSE and perceptual mean opinion scores. In case of multi source
learning environment, this work can be used for computing fea-
tures corresponding to individual sources from a mixture of sources,
which will be addressed in future. Dictionary learning in a rever-
berative environment will be addressed in future work. Multi source
localization in a noisy and reverberative environment is also a topic
of future investigation. This can lead to the development of joint
source separation and recognition methods in a DNN framework.
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