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ABSTRACT

We propose a method for estimating the distance between a sound
source and a pair of recording microphones. The developed algo-
rithm operates in the short-time Fourier transform domain and is
based on estimates of the coherent-to-diffuse power ratio, which
provides a measure for the amount of reverberation in each time-
frequency bin. For a direct use of these estimates, precise knowledge
on the room characteristics is necessary, which is in practice usually
not available and hard to obtain. Therefore, we use a learning-based
method, which adapts to the characteristics of the room in a train-
ing phase and estimates the source-microphone distance in a testing
phase. The experiments comprise various setups with simulated and
real data. It is shown that the proposed method generalizes well
for different microphone positions and works robustly for different
source signals, directions of arrival, reverberation times, and signal
observation intervals. This leads to a high estimation accuracy at a
low computational complexity with a small amount of training data.

Index Terms— Acoustic range estimation, Learning, Coherent-
to-Diffuse Power Ratio

1. INTRODUCTION

The source-microphone distance is the length of the line-of-sight be-
tween an acoustic source and a recording microphone. Complement-
ing the Direction of Arrival (DOA), it is one of the core features for
estimating the position of an acoustic source [1] and knowing it is
highly desirable for many audio signal processing applications in-
volving distant talkers, e.g., teleconferencing [2], surveillance [3],
hearing aids [4] and smart homes [5]. The estimation of the DOA
has received much attention and many different methods have been
established, e.g., based on correlation [6], blind system identification
[7, 8] or clustering of phase differences [9]. On the other hand, the
estimation of the source microphone distance is much less investi-
gated. Two main classes of existing algorithms can be distinguished:
Methods relying on prior information on the room properties [10, 11]
and learning-based methods [13-17], which adapt to a specific room
in a training phase. Prior knowledge about the room characteristics
are, e.g., previously measured room impulse responses, as, e.g., used
by [10]. Precise knowledge of the room characteristics, such as the
absorption coefficients and the surface area of the walls, are used by
[11]. However, such detailed prior knowledge is usually not avail-
able in practice and costly to obtain. Therefore, the second class
of algorithms aims at learning these room characteristics before esti-
mating the distances: A learning-based method for microphone array
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calibration was proposed by [12] and adapted by [13] for distance es-
timation. Unfortunately, this approach needs extensive training with
white noise signals. A binaural method based on an estimate of the
Direct-to-Reverberant Energy Ratio (DRR) was proposed by [14],
which is capable of handling moving sound sources, but the local-
ization performance degrades with increasing reverberation time T60

and the average localization error is reported to be up to 1 m, which
is too coarse for many applications. Monaural and binaural methods
using several statistical measures of the recorded speech signals in
combination with Gaussian classifiers and support vector machines
were proposed in [15, 16]. A binaural learning-based distance esti-
mation scheme using head-related transfer functions for robot audi-
tion was proposed by [17].

In this paper, we describe a learning-based approach for the es-
timation of the acoustic source-microphone distance. The proposed
method is computationally efficient, robust against position changes
of the recording microphones and accurate in terms of distance es-
timation error. Furthermore, the proposed method needs only a few
training data points to fit the probabilistic model and produce re-
liable estimates in the trained acoustic environment in the testing
phase. The resulting method is verified using simulated and mea-
sured Room Impulse Responses (RIRs) while varying acoustic con-
ditions, amount of training data and source signals. Note that even
though absolute distances are trained and evaluated in this contri-
bution, relative distances between acoustic sources are sufficient for
many practical applications, which simplifies the training drastically.

The proposed algorithm relies on the power ratio of the direct
and the reflected sound components, which is an important cue for
human listeners to estimate the distance of a sound source [18]. This
ratio can be estimated using the spatial coherence [19], which yields
a measure for the amount of reverberation in the observed signal,
and can also be used for dereverberation [20]. Unlike [10] and [11],
the proposed method does not rely on prior knowledge of the room
parameters and applies a Gaussian classifier just as [12-14], but re-
quires much less training data.

2. CDR ESTIMATOR

We consider one acoustic point source of unknown position, emitting
an acoustic wideband signal in an enclosure. The acoustic signal is
recorded by two microphones with spacing dmic and is affected by
reverberation, e.g., caused by reflections at the walls, and additive
uncorrelated microphone noise. The m-th microphone signal xm(t)
is modeled by a desired signal component sm(t) and an undesired
signal component nm(t) representing noise and/or reverberation

xm(t) = sm(t) + nm(t), m ∈ {1, 2}. (1)
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Fig. 1: Fitted Gaussian PDFs to averaged diffuseness values γ̂ for
the distances d ∈ {0.2m, 0.6m, 1.0m, . . . , 2.6m} (from the left to
the right).

The reverberant signal component is assumed to be generated by a
diffuse sound field. In the Short-Time Fourier Transform (STFT) do-
main the microphone signals are denoted by Xm(l, f) with l and f
indexing time frame and frequency bin, respectively. The auto/cross
Power Spectral Density (PSD) Φxmxm′ (l, f) is estimated by recur-
sive time averaging of the instantaneous microphone signal spectra

Φ̂xmxm′ (l, f) = λΦ̂xmxm′ (l−1, f)+(1−λ)Xm(l, f)X∗m′(l, f),
(2)

for m,m′ ∈ {1, 2}. The complex conjugate is denoted by (·)∗ and
λ is a smoothing factor. The complex spatial coherence function is
given by

Γ̂x(l, f) =
Φ̂x1x2(l, f)√

Φ̂x1x1(l, f)Φ̂x2x2(l, f)
. (3)

Based on this, the Coherent-to-Diffuse Power Ratio (CDR) between
two omnidirectional microphones can be defined as [19]

CDR(l, f) =
Γn(l, f)− Γx(l, f)

Γx(l, f)− Γs(l, f)
, (4)

where Γx(l, f), Γs(l, f), Γn(l, f) are the spatial coherence func-
tions for the observations x, the desired signal s, and the reverbera-
tion/noise n, respectively. A high CDR corresponds to a low amount
of reverberation in the respective time-frequency bin. Without loss
of generality, the coherence function of the reverberant sound com-
ponents is modeled here as a diffuse sound field

Γn(f) =
sin(2πfdmic/c)

2πfdmic/c
(5)

with speed of sound c. The estimator (6), which has been proposed
in [21] (there called ĈDRprop3), is used in this paper. Note that (6)
yields real-valued estimates, whereas (4) generally does not. The
time and frequency arguments l and f are omitted in (6) for brevity.
Furthermore, Re{·} denotes the real part and |·| the absolute value of
a complex number, respectively, whereas Γ̂x is the estimated spatial
coherence of the two microphone signals in (3). The CDR estima-
tor (6) is DOA-independent and is shown to be unbiased and robust
[19], i.e., small deviations in the estimate of the spatial coherence
Γ̂x do not cause large deviations in ĈDR. A detailed discussion of
the properties of the estimator, as well as a comparison to different
CDR estimators can be found in [19]. We use the diffuseness DIFF,
defined in [19] as

D̂IFF(l, f) =
1

ĈDR(l, f) + 1
, (7)
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Fig. 2: Linear interpolation function fitted to averaged diffuseness
values γ̂ for the distances di ∈ {0.2m, 0.4m, 0.6m, . . . , 2.6m}.

as the feature for the acoustic distance estimation in this contribu-
tion. To reduce the variance of the estimates and to obtain a single
value as a feature for the estimation of the source-microphone dis-
tance, we average over all available time frames Nt and a frequency
interval [fmin, fmax] to obtain the averaged diffuseness

γ̂ =
1

Nt(fmax − fmin)

Nt∑
l=1

fmax∑
f=fmin

D̂IFF(l, f). (8)

Note that, when used with speech signals, γ̂ is in general dependent
on the amount of speech pauses.

3. LEARNING-BASED SOURCE-MICROPHONE
DISTANCE ESTIMATION

In this contribution, we use the averaged diffuseness γ̂ as a fea-
ture for the estimation of the distance between the center of the
microphone pair and the source, as this is a feature which is easy
to compute. γ̂ is not dependent on the source power, but increases
with source-microphone distance as the power of the coherent sig-
nal components decreases with increasing source-microphone dis-
tance, whereas the diffuse signal power is constant [22]. Therefore,
the estimated diffuseness constitutes a feature related to the source-
microphone distance. However, the energy decay of the coherent
signal components is also dependent on the room characteristics,
e.g., the room volume or the reflection coefficients, which are un-
known in practice and have to be estimated [23]. Hence, we pro-
pose to learn the mapping from the measured diffuseness values to
a source-microphone distance for a given room via a classification
algorithm based on training a Gaussian Mixture Model (GMM) and
an algorithm based on linear interpolation.

3.1. Classification

We start by defining a setD of possible source microphone distances

D = {di ∈ R+|di = d0 + i∆d, i ∈ N0} , (9)

where ∆d is the difference between two neighboring discrete dis-
tances of the set and d0 is the minimum distance from the micro-
phone pair. The algorithm is divided into a training phase and a
testing phase. In the training phase, estimates γ̂ of the average dif-
fuseness for known distances di of the grid D are collected and a
GMM is trained for these labeled training data points. Similar learn-
ing methods have been frequently used in the literature [12-14]. In
the testing phase, discrete source-microphone distances are inferred
from classified γ̂ estimates in the same acoustic environment. The
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set of γ̂ values obtained in the training phase is represented as a
GMM, where each component corresponds to a discrete distance di
and is defined by a mean µi and variance σ2

i describing the distribu-
tion of the estimated γ̂ for sources at this distance:

pi (γ̂|di) = N
{
γ̂|µi, σ2

i

}
. (10)

We choose a uniform prior on d and obtain an approximation for the
PDF of the averaged diffuseness on D

p(γ̂) ≈
|D|∑
i=1

pi(γ̂|di), (11)

where |D| is the cardinality of the set of possible distances. We
denote the j-th data point of the averaged diffuseness of distance
di with γ̂i,j . With this definition the parameters of the Gaussian
components can be estimated as follows [24]

µi =
1

Ni

Ni∑
j=1

γ̂i,j and σ2
i =

1

Ni − 1

Ni∑
j=1

(γ̂i,j − µi)2 , (12)

where Ni is the number of measured training points γ̂i,j at distance
di. An exemplary result is shown in Fig. 1 for a simulated room of
dimensions 10m × 8m × 10m and a reverberation time of 1s [25].
The Gaussian components are trained on a grid with d0 = 0.2m
and ∆d = 0.4m. It can be seen, that the variances of the Gaussian
components increase and simultaneously the difference between the
means decrease for increasing γ̂. In the testing phase, the source
microphone distances are estimated by choosing the Gaussian com-
ponent, which yields the maximum likelihood for the estimated γ̂

d̂ = argmax
di∈D

pi (γ̂|di) . (13)

3.2. Interpolation

The proposed classification-based method produces accurate results
if the length of the intervals between the distances used for train-
ing are small, i.e., the set of training distances is large. However,
in a practical application, |D| will be very small and distances not
coinciding with the learned grid points will cause large errors. To
alleviate this problem, we introduce an interpolation approach based
on linear interpolation in the following.

For describing the interpolation method, we first define the La-
grange interpolation polynomial of order one

Li(γ̂) =


γ̂−µi−1

µi−µi−1
for i > 1 and γ̂ ∈ [µi−1, µi)

µi+1−γ̂
µi−1−µi

for i < |D| and γ̂ ∈ [µi, µi+1]

0 else

, (14)

where i = 1, . . . , |D| and µi is given by (12). Based on this, the in-
terpolation estimate is given by evaluation of the interpolation func-
tion

d̂ =

|D|∑
i=1

diLi(γ̂). (15)

An example for an interpolation function is shown in Fig. 2.

4. RESULTS

For all experiments we use two microphone recordings, obtained by
convolving simulated or real RIRs with an anechoic speech signal.
For the STFT, we choose a DFT length of 512, a von Hann window
of length 25 ms and a frameshift of 10 ms. The smoothing factor for
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Fig. 3: a) Means µi and b) standard deviations σi of the GMM
trained separately at all positions of Fig. 4 as a function of the
source-microphone distance for grid resolutions ∆d = 0.2m and
∆d = 0.5m.
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Fig. 4: Microphone positions for testing the generalization of the
algorithm to different untrained positions (marked by crosses and
numbers). The training positions for position 0 are marked by dots.

the estimation of the PSD is chosen to be λ = 0.95. This very strong
averaging is chosen to reduce the influence of speech pauses and the
nonstationarity of speech. The frequency interval [fmin, fmax] in (8)
is chosen to be [125 Hz, 3.5 kHz] as this corresponds to the most
significant part of the speech spectrum.

4.1. Simulated Data

First, we describe experimental results obtained with anechoic
speech signals convolved with RIRs simulated by an image source
model [26] and applying the room impulse generator [25]. We
choose the room dimensions to be 10 m× 8 m× 10 m and the rever-
beration time to be 1s. All sources and microphones are placed at a
height of 2m. The microphone spacing is set to dmic = 0.2 m. The
GMM is trained on a distance grid with ∆d = 0.2 m/∆d = 0.5 m
and DOAs {0◦, 30◦, 60◦, . . . , 180◦} at each distance of the grid.
In the testing phase, we generate source positions for testing the
algorithm by drawing uniformly distributed distances d ≤ 2.6 m
and DOAs between 0◦ and 180◦. To obtain a representative result,
100 random source positions (in general not coinciding with the dis-
tance grid D), are evaluated for each training scenario. The median
of the absolute distance estimation error ẽ is computed as a con-
cise performance measure. Throughout the following experiments,
larger errors are obtained for larger distances, which is caused by
an increasing overlap of the Gaussian components (cf. Fig. 1) and
decreasing distances between the estimated means of the GMM.

The estimation accuracy is tested for various source signals,
namely two different noise (Gaussian/uniformly distributed) and
five different speech signals and it is found that the results differed
only marginally. Moreover, using identical or different signals for
training and testing does not affect the estimation performance of
the algorithm. Tab. 1 shows the median distance estimation error for
the algorithm trained and evaluated at different positions of Fig. 4
respectively.

To investigate the generalization of the trained algorithm to dif-
ferent recording positions, the GMM trained at position 0 was eval-
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Fig. 5: Percentage of correctly identified source-microphone distances for real recordings in four rooms with different T60 values at distances
of {1 m, 2 m, 4 m} respectively, dependent on the number of training data points per Gaussian in the GMM.

0 1 2 3 4

∆d = 0.5 m Class. 16.0 14.3 14.2 15.5 15.2
Interp. 6.3 6.6 6.4 8.1 6.6

∆d = 0.2 m Class. 7.7 8.0 7.3 10.3 7.5
Interp. 5.4 4.8 6.0 8.9 5.2

Table 1: Median absolute localization error ẽ in cm for different po-
sitions (see Fig. 4) for the classification algorithm as well as for the
interpolation algorithm for different grid resolutions. The algorithm
was trained and evaluated at the same positions respectively. Each
experiment was repeated 100 times

0 1 2 3 4

∆d = 0.5 m Class. 16.0 16.7 14.3 15.8 15.5
Interp. 6.3 7.0 6.4 9.6 6.4

∆d = 0.2 m Class. 7.7 8.2 7.5 11.9 7.5
Interp. 5.4 6.0 6.2 10.2 5.2

Table 2: Generalization of the algorithm trained at position 0 to dif-
ferent untrained microphone positions. ẽ in cm for the classification
algorithm as well as for the interpolation algorithm for different grid
resolutions. Each experiment was repeated 100 times.

uated at positions {1, 2, 3, 4} (see Fig. 4). The results of this exper-
iment are given in Tab. 2. The distance estimation errors are slightly
higher in general compared to the results of Tab. 1. Furthermore,
the GMM was trained at the positions {0, 1, 2, 3, 4} and the result-
ing means µi and standard deviations σi of the GMM are plotted in
Fig. 3 for grid resolutions ∆d = 0.2 m and ∆d = 0.5 m . The
means vary little between the different training positions for large
source-microphone distances. Also the standard deviations follow
the same trend for increasing distances. In summary, it can be con-
cluded that the proposed method, once trained, generalizes well to
different evaluation positions in the room. The performance of the
algorithm is stable for different reverberation times T60. The dis-
tance estimation error ẽ decreases for increasing T60 slightly, due to
the fact that the diffuseness is increasing as the acoustic environment
becomes more reverberant. Hence, the means of the Gaussian com-
ponents have a wider spread over the interval of possible γ̂ values
and are more distinct than for lower reverberation times. However,
the performance differences between different T60 except for very
low reverberation times are small. The effect of the duration of the
microphone signals is small unless the signal duration is less than
a second. The computational complexity for training and testing is
dominated by the computation of (8) and thus essentially reduces to
two FFTs and few simple algebraic operations, so that the overall
computational complexity can be viewed as small.

4.2. Real Recordings

In this section, we evaluate our algorithm using recorded RIRs from
two meeting rooms (A, B with T60 = 0.2 s, 0.4s), respectively, a
seminar room (Room C, T60 = 0.7 s) and a large foyer (Room D,
T60 = 3.5 s). The data sets consist of 34, 34, 39 and 37 RIRs for
rooms A, B, C and D respectively, measured from different source
positions with source-microphone distances of {1 m, 2 m, 4 m} and
different DOAs. The distance between the microphones is chosen to
be dmic = 0.21 m in all recordings. The algorithm is trained on a
subset of the available RIRs and is evaluated on the remaining ones.
The number of correctly classified source distances is counted and
divided by the number of all estimates for assessment of the perfor-
mance of the algorithm. The relative amount of correctly classified
distances is chosen as a measure due to the limited number of avail-
able RIRs. The training and testing phase is repeated 500 times by
choosing the training subset randomly in each experiment. Fig. 5
shows the percentage of correctly classified source-microphone dis-
tances averaged over all experiments for different numbers of train-
ing points for the rooms described above.

The minimum training set consists in two samples. Even for
this tiny training set, over 69% of the source positions are identified
correctly. Note that for practical applications it is also possible to
choose an arbitrary variance for the Gaussian components, such that
one training data point would be enough. The amount of correctly
identified source positions increases with the size of the training set.
However, the increase is low for training sets larger than 4 samples,
such that we can conclude that very few training points for each dis-
tance are sufficient to achieve a high estimation accuracy. Note that
the experiments have shown that the proposed approach generalizes
to different DOAs also in scenarios with measured RIRs.

5. CONCLUSION

We proposed a learning-based method for estimating the distance
between an acoustic source and two recording microphones. The
developed method has low computational complexity, needs only
few training data points for each distance in a predefined grid, gener-
alizes to different microphone positions and yields accurate distance
estimates. The proposed approach is furthermore robust against
changes in reverberation time, source signals, observed signal dura-
tions, DOAs and source-microphone distances. The effectiveness of
the approach has been shown for real and simulated RIRs. Starting
from a classification-based approach, an interpolation scheme was
used to enhance the performance of the algorithm, especially for low
grid resolution.

While the effectiveness of the algorithm is verified in this paper,
a comparison with other algorithms that require much more training
data is planned for future benchmarking.
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