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ABSTRACT

Here we propose a permutation-free cGMM (PF-cGMM), a new
probabilistic model of observed mixtures, which can resolve per-
mutation ambiguity between frequency bins, and is applicable even
when the number of sources is unknown. A recently proposed com-
plex Gaussian mixture model (cGMM) is highly effective for fre-
quency bin-wise clustering when the number of sources is known.
However, it cannot resolve the permutation ambiguity, and is inap-
plicable when the number of sources is unknown. The proposed
PF-cGMM is an extension of the cGMM, which resolves these is-
sues. The resolution of the permutation ambiguity can be realized by
a spatial prior called a complex inverse Wishart mixture model (cI-
WMM). The absence of the permutation ambiguity facilitates source
counting, which is performed by hierarchical clustering in this paper.
Experiments showed that the PF-cGMM was able to (1) resolve the
permutation ambiguity and (2) realize source separation even when
the number of sources was unknown with little performance degra-
dation compared to when it was known.

Index Terms— Microphone array signal processing, source
separation, time-frequency masks, permutation ambiguity, source
counting.

1. INTRODUCTION

A source signal (e.g., speech) is often sparse in the sense that only
a small fraction of its time-frequency components capture a large
fraction of its overall energy [1]. If observe signals are composed of
such sparse source signals, they can be well approximated by only
one dominant source signal at each time-frequency point. The dom-
inant source signal is indicated by masks, i.e., the presence proba-
bilities of the source signals. Once obtained, these masks can be
utilized for various array signal processing, such as source separa-
tion [1], denoising [2], and source localization [3]. For example,
source separation is realized by retaining the time-frequency com-
ponents dominated by the source signal of interest while suppress-
ing the others. Recently, this mask-based approach has turned out to
be highly effective, and was employed in the best-performing sys-
tem [2, 4] in noise-robust automatic speech recognition (ASR) chal-
lenges CHiME-3 [5] and CHiME-4. In this approach, the accuracy
of mask estimation is critical for the overall performance.

There are two main approaches to mask estimation, which have
different advantages and disadvantages [6]: a deep neural network
(DNN)-based approach [7–9] and a spatial clustering-based ap-
proach [1, 2, 10–13]. In the former, a DNN is trained in advance
on training data so that it can estimate the masks from the observed
spectral features. In the latter, on the other hand, the masks are

estimated by unsupervised clustering of the observed spatial fea-
tures. Here, we focus on the latter, which has the advantage over the
former that it can more easily deal with mixtures of more than one
source signals, and it is insensitive to mismatch between the training
and the test conditions.

Among the mask estimation methods based on the latter ap-
proach, those based on time and level differences between micro-
phones [1] are especially well known. Recently, cGMM-based mask
estimation [14] has turned out to be highly effective, which was em-
ployed in the above best-performing system [2, 4] in CHiME-3 and
CHiME-4. While the conventional cGMM is highly effective for fre-
quency bin-wise clustering, it cannot resolve permutation ambiguity.
That is, the cGMM cannot group together the bin-wise clusters cor-
responding to the same source in different frequency bins. This is
a major obstacle in applying the cGMM to source separation for an
unknown number of sources or in an online manner.

In contrast, the proposed PF-cGMM can resolve the permutation
ambiguity based on a spatial prior called a complex inverse Wishart
mixture model (cIWMM). The cIWMM does not require the prior
knowledge of directions of arrival (DOA) of the sources, because it
has source DOAs as hidden variables. Furthermore, the permutation-
free nature of the PF-cGMM facilitates source counting, which is
performed by hierarchical clustering in this paper. Consequently, the
PF-cGMM realizes source separation even for an unknown number
of sources.

The rest of the paper is organized as follows. Section 2 describes
the signal model and the conventional cGMM. Section 3 describes
the proposed PF-cGMM. Section 4 compares the source separation
performance of the PF-cGMM and conventional methods including
the cGMM. Finally, Section 5 concludes the paper.

2. BACKGROUND

2.1. Signal Model

Suppose we observeN(≥ 2) concurrent speech signals usingM(≥
2)microphones. In the short-time Fourier transform (STFT) domain

the observed signals, ytf �
[
y
(1)
tf · · · y

(M)
tf

]T
, can be modeled

as follows

ytf =

N∑
n=1

s
(n)
tf h

(n)
f + vtf . (1)

Here, y(m)
tf denotes the observed signal at the mth microphone, t ∈

{1, . . . , T} the frame index, f ∈ {1, . . . , F} the frequency bin in-
dex, T the number of frames, F the number of frequency bins up
to the Nyquist frequency, s(n)

tf the STFT of the nth source signal,
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h
(n)
f �

[
h
(1,n)
f · · · h

(M,n)
tf

]T
, the time-invariant transfer func-

tion from the nth source to the microphones, and the superscript T

transposition. vtf �
[
v
(1)
tf · · · v

(M)
tf

]T
denotes the background

noise.

2.2. Complex Gaussian Mixture Model (cGMM)

We model the likelihood of the observation vector ytf with a com-
plex Gaussian mixture model (cGMM) [14]. The cGMM is defined
by

p(ytf |Θ) =

N∑
n=0

α
(n)
f N

(
ytf ;0, φ

(n)
tf Σ

(n)
f

)
, (2)

where n = 0 corresponds to the background noise vtf , and n ∈
{1, . . . , N} to a speaker [15]; N (y;μ,Σ) denotes the complex
Gaussian distribution with mean μ and covariance matrixΣ:

N (y;μ,Σ) � 1

det(πΣ)
exp

[−(y − μ)HΣ−1(y − μ)
]
, (3)

where the superscript H denotes Hermitian transposition. Σ(n)
f de-

notes the spatial covariance matrix [16], and models the source lo-
cation of the nth speaker (or the spatial characteristics of the back-
ground noise for n = 0). φ(n)

tf models the spectrogram of the nth
source signal.

Since the clustering is performed at each frequency bin indepen-
dently, clusters with the same label n at different frequency bins may
not necessarily correspond to the same source signal. This ambigu-
ity is referred as the permutation ambiguity and makes it difficult to
extend the cGMM to online processing. In the following section,
we tackle this issue by introducing prior information over the spatial
covariance matrixΣ(n)

f .

3. PROPOSED METHOD

3.1. Complex Inverse Wishart Mixture Model (cIWMM) for
Spatial Prior

Let us introduce the complex inverse Wishart distribution

IW(Σ;Ψ, ν)

� (detΨ)ν

πM(M−1)/2

M∏
m=1

Γ(ν −m+ 1)

exp[−tr(ΨΣ−1)]

(detΣ)ν+M
(4)

defined on the set of all Hermitian positive-definite matrices of size
M ×M . Ψ(k)

f denotes the scale matrix, and models a prior estimate
ofΣ(n)

f when the speaker is at the kth potential source location. ν(k)
f

denotes the degrees of freedom, and models the degrees of deviation
of Σ(n)

f from Ψ
(k)
f when the speaker is at the kth potential source

location. BothΨ(k)
f and ν(k)

f are pre-trained on training data or com-
puted theoretically under the planewave assumption, and constitute
the probabilistic spatial dictionary.

The complex inverse Wishart distribution has been employed as
a previous probability for the covariance matrix when the source
DOAs or the room characteristics where known [17, 18]. In this
work, we model the unknown DOAs as a PSD based on a complex

inverseWishart mixture model (cIWMM) over the spatial covariance
matrixΣ(n)

f , for a speaker n as

p
({

Σ
(n)
f

}
f

)
=

K∑
k=1

β(n,k)
F∏

f=1

IW
(
Σ

(n)
f ;Ψ

(k)
f , ν

(k)
f

)
, (5)

∀n ∈ {1, . . . , N}.
Here, k denotes the index of a potential speaker location, and K
the number of potential speaker locations. β(n,k) denotes a mixture
weight and models the prior probability of the nth speaker being at
the kth potential speaker location.

As for the prior distribution over the spatial covariance matrix
of the background noise, Σ(0)

f , we employ the following complex
inverse Wishart distribution:

p
({

Σ
(0)
f

}
f

)
=

F∏
f=1

IW
(
Σ

(0)
f ;Ψ

(0)
f , ν

(0)
f

)
. (6)

Under the assumption of isotropic noise, we setΨ(0)
f ∝ I , where I

denotes the identity matrix. Alternatively, we can also set Ψ(0)
f ∝

Γf , where Γf denotes the spatial covariance matrix for the spheri-
cally or the cylindrically isotropic noise [19, 20].

The parameter set Θ now is explicitly defined as

Θ �
{
α
(n)
f ,Σ

(n)
f , β(n,k)}, (7)

where the range of n is 0 ≤ n ≤ N for α(n) andΣ(n)
f and 1 ≤ n ≤

N for β(n,k). We denote the likelihood of the observed data Y and
the prior distribution over Θ by

p(Y|Θ) =

T∏
t=1

F∏
f=1

p(ytf |Θ), (8)

p(Θ) =

N∏
n=0

p
(
Σ

(n)
1 , . . . ,Σ

(n)
F

)
. (9)

3.2. Objective Function: Posterior Probability

The parameters Θ are estimated so that the posterior probability
p(Θ|Y) or equivalently the log-posterior probability ln p(Θ|Y) is
maximized. Introducing a weight γ to balance between the likeli-
hood and the prior, we have the following objective function:

L(Θ) � ln p(Y|Θ) + γ ln p(Θ)

=

T∑
t=1

F∑
f=1

ln

[ N∑
n=0

α
(n)
f N

(
ytf ;0, φ

(n)
tf Σ

(n)
f

)]

+ γ

N∑
n=1

ln

[ K∑
k=1

β(n,k)
F∏

f=1

IW
(
Σ

(n)
f ;Ψ

(k)
f , ν

(k)
f

)]

+ γ

F∑
f=1

ln IW
(
Σ

(0)
f ;Ψ

(0)
f , ν

(0)
f

)
. (10)

3.3. Model Parameter Estimation Based on Majorization-
Minimization

Since L(Θ) has no closed-form solution, we derive update equa-
tions for the parametersΘ using a majorization-minimization (MM)
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technique. Let Φ be a set of auxiliary variables defined by Φ �{
λ
(n)
tf , μ(n,k)

}
satisfying

N∑
n=0

λ
(n)
tf = 1,

K∑
k=1

μ(n,k) = 1, (11)

where the range of n is 1 ≤ n ≤ N for μ(n,k). Applying Jensen’s
inequality, we can obtain an auxiliary function Q(Θ,Φ) as a lower
bound of L(Θ) and tangent to the current estimate of Θ [21]. In a
MM approach, we estimate Θ by maximizing the auxiliary function
Q(Θ,Φ) rather than the actual function L(Θ). Therefore, we can
estimate Θ by iterating the following two steps alternately, which
increases L(Θ) monotonically.

3.3.1. Majorization Step

First, we update Φ by

λ
(n)
tf =

α
(n)
f N

(
ytf ;0, φ

(n)
tf Σ

(n)
f

)
N∑

ν=0

α
(ν)
f N

(
ytf ;0, φ

(ν)
tf Σ

(ν)
f

) , (12)

μ(n,k) =

β(n,k)
F∏

f=1

IW
(
Σ

(n)
f ;Ψ

(k)
f , ν

(k)
f

)

K∑
l=1

β(n,l)
F∏

f=1

IW
(
Σ

(n)
f ;Ψ

(l)
f , ν

(l)
f

) , (13)

so that Q(Θ,Φ) is maximized.

3.3.2. Minimization Step

Then, we increaseQ(Θ,Φ) by updatingΘ. Partial differentiation of
Q(Θ,Φ) with respect to Θ leads to the following update rules:

α
(n)
f ← 1

T

T∑
t=1

λ
(n)
tf , (14)

β(n,k) ← μ(n,k), (15)

Σ
(n)
f ←

T∑
t=1

λ
(n)
tf

1

φ
(n)
tf

ytfy
H
tf + γ

K∑
k=1

μ(n,k)Ψ
(k)
f

T∑
t=1

λ
(n)
tf + γ

K∑
k=1

μ(n,k)
(
ν
(k)
f +M

) , (16)

∀n ∈ {1, . . . , N},

Σ
(0)
f ←

T∑
t=1

λ
(0)
tf

1

φ
(0)
tf

ytfy
H
tf + γΨ

(0)
f

T∑
t=1

λ
(0)
tf + γ

(
ν
(0)
f +M

) , (17)

φ
(n)
tf ← 1

M
yH
tf

(
Σ

(n)
f

)−1
ytf . (18)

3.3.3. Permutation Step

To avoid convergence to permuted solutions, after every MM itera-
tion we permute the spatial covariance matrix at each frequency, so
that Q(Θ,Φ) is maximized as:

Πf ← argmax
Π

N∑
n=1

K∑
k=1

β(n,k) ln IW
(
Σ

(Π(n))
f ;Ψ

(k)
f , ν

(k)
f

)
,

(19)

where Π : {1, ..., C} → {1, ..., C} is a permutation on the set
{1, ..., C}. The nondecrease of the likelihood function through this
modified MM iteration is guaranteed.

3.4. Source Counting Based on Hierarchical Clustering

If the number of clusters L, is greater than N , the estimated DOAs
defined by β(n,k) are grouped together forming N clusters along N
distinct directions . Hence, by applying hierarchical clustering [22]
over the estimated DOAs it is possible to calculate N .

Therefore, the final masksM(n)
tf (n = 1, ..., N) can be obtained

by merging the posterior probabilities, λ(l)
tf (l = 1, ..., L), which be-

long to the same group J(n), as follows

M(n)
tf ←

∑
l∈J(n)

λ
(l)
tf , (20)

andM(0)
tf is obtained byM(0)

tf ← λ
(0)
tf .

3.5. Discussion

We also proposed a permutation-free clustering method based on
time-varying mixture weights [23]. This conventional method relies
on the temporal activation pattern of each source signal to resolve
permutation ambiguity. This method requires a certain duration of
data to utilize the temporal information effectively, which may be an
obstacle in online processing. In contrast, the proposed method re-
lies on spatial information instead of temporal by modeling the spa-
tial prior by a dictionary-based cIWMM. Therefore, the proposed
method is more suited for online procesing, which is a remarkable
advantage over the conventional method [23].

4. EXPERIMENTS

4.1. Experimental Conditions

We conducted simulations to demonstrate the effectiveness of the
proposed PF-cGMM. In the first simulation (Sec. 4.2), we compared
the PF-cGMMwith three conventional models, namely, cGMM [14],
cWMM [12, 13] and cBMM [24] in terms of source separation with
known N . In the second simulation (Sec. 4.3), the PF-cGMM was
tested for unknown N .

We generated observed signals by convolving 8 s-long clean
speech signals with measured room impulse responses. These room
impulse responses were measured in an experimental room using
three microphones (M = 3) located as in Figure 1. We averaged the
signal-to-distortion ratio (SDR) [25] for 16 trials with different com-
binations of speech signals and different distances between sources
and the array centroid.

The observed signals were sampled at 8 kHz, the frame length
was 1024 points (128ms), the frame shift 256 points (32ms), and
the number of iterations 30. The hyperparameters of the cIWMM
were set at ν(k)

f = M + 1.1 and Ψ(k)
f =

(
ν
(k)
f − M

)
h

(k)
f h

(k)H
f .

The vector h(k)
f denotes the steering vector for the direction k based

on a planewave assumption. We set the strength of the prior, γ, at 5.
The product in (13) was replaced by a sum for numerical stability.
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Fig. 1: Experimental setup
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Fig. 2: Overdetermined case (N = 2,M = 3)

4.2. Source Separation Simulations

Figures 2–4 show SDR as a function of the reverberation time RT60.
The solid lines are results with postprocessing [13] for solving the
permutation ambiguity, while the dashed lines are results with-
out the postprocessing. The cWMM, the cBMM, the cGMM, and
the PF-cGMM combined with the postprocessing are denoted by
pcWMM, pcBMM, pcGMM, and pPF-cGMM, respectively. Re-
garding the SDR with the postprocessing, the pPF-cGMM and the
pcGMM worked best, the pcBMM slightly worse, and the pcWMM
significantly worse. While the SDR for the proposed PF-cGMM de-
graded little without the postprocessing, those for the conventional
models degraded significantly. Consequently, the SDR without the
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Fig. 3: Determined case (N = 3,M = 3)
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Fig. 4: Underdetermined case (N = 4,M = 3)

Table 1: Source counting accuracy of the proposed method. The
ratio (%) of the trials with correct source counting to the total number
of trials (16) is shown.

reverberation time (ms)
N 130 200 350 300 370 440

2 94% 75% 81% 75% 81% 88%
3 100% 94% 94% 94% 81% 94%
4 88% 94% 68% 75% 88% 81%

postprocessing was much higher for the proposed PF-cGMM than
for the conventional models. For high reverberation times, the PF-
cGMM gave a smaller SDR than the pcGMM, which is probably
because of the planewave assumption in the cIWMM. This can be
compensated by designing the cIWMM based on the data measured
in the test environment, or preprocessing the observed signals for
dereverberation.

4.3. Source Counting Results

Table 1 shows the source counting accuracy of the proposed method,
when N was unknown. The threshold for grouping the DOAs was
set to 25 degrees. We set the number of clusters L at 6, which ex-
ceeded the number of sourcesN = 2, 3, 4. We see that the proposed
method counted sources correctly with a high probability except for
the most reverberant case.

5. CONCLUSIONS

We introduced the PF-cGMM, a cGMMwith a spatial prior based on
the cIWMM. Experiments showed that the PF-cGMM can perform
source separation without causing the permutation ambiguity and
estimate the number of sources accurately.

The future work includes an online implementation and applica-
tion to the real-data processing, such as meetings.
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