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ABSTRACT
This paper addresses the problem of blind adaptive beamforming
using a hierarchical Bayesian model. Our probabilistic approach re-
lies on a Gaussian prior for the speech signal and a Gamma hyper-
prior for the speech precision, combined with a multichannel linear-
Gaussian state-space model for the possibly time-varying acoustic
channel. Furthermore, we assume a Gamma prior for the ambient
noise precision. We present a variational Expectation-Maximization
(VEM) algorithm that employs a variant of multi-channel Wiener
filter (MCWF) to estimate the sound source and a Kalman smoother
to estimate the acoustic channel of the room. It is further shown
that the VEM speech estimator can be decomposed into two stages:
A multichannel minimum variance distortionless response (MVDR)
beamformer and a subsequent single-channel variational postfilter.
The proposed algorithm is evaluated in terms of speech quality, for
a static scenario with recorded room impulse responses (RIRs). It is
shown that a significant improvement is obtained with respect to the
noisy signal, and that the proposed algorithm outperforms a base-
line algorithm. In terms of channel alignment, a superior channel
estimate is demonstrated compared to the causal Kalman filter.

Index Terms— Adaptive beamforming, Kalman smoother, vari-
ational EM.

1. INTRODUCTION

Speech enhancement deals with the reconstruction of a speech
source from microphone signals recorded in a noisy and reverber-
ant environment, with commercial applications in devices as mobile
phones, hands-free systems or hearing aids. Multichannel Wiener
beamformer is a common approach that exploits the spatial diver-
sity of the acoustic channels for enhancing the desired source while
suppressing sounds from other directions.

The design of beamformers requires that certain parameters are
available for their computation, namely the relative transfer function
(RTF) of the speaker and the covariance matrices of the background
noise and the speaker [1]. Numerous methods exist for estimating
these parameters. Some approaches are based on speech presence
probability (SPP), by first determining the time-frequency bins dom-
inated by either speech or noise, and then estimating independently
the model parameters [2–5]. Other approaches jointly estimate all
parameters according to some criterion, such as maximum likeli-
hood (ML) or maximum a posteriori (MAP) criteria [6–8]. When the
resulting optimization problems cannot be solved in closed-form, the
EM algorithm [9,10] is a solution that breaks down the problem into
the signal estimate and the parameters estimate that are iteratively
solved.

The Bayesian approach defines prior distributions over each pa-
rameter, and thus provides an elegant way to explore uncertainty in
the model and to incorporate prior knowledge into the learning pro-
cess. Hierarchical Bayesian models, where observations are mod-

eled conditionally on certain parameters, which themselves are given
a probabilistic specification in terms of further parameters, are very
useful since they allow to define structured models, with dependen-
cies among parameters. However, to apply the EM algorithm we
must know the posterior distribution, which might be intractable in
complex Bayesian models. The variational methodology [11–15] al-
leviates this drawback of the EM procedure, by approximating the
posterior distribution. This approach is more robust and less sensi-
tive to local maxima and overfitting [1, 13], as the inference process
relies on the entire probability mass rather than just point estimates.
Furthermore, it allows incorporation of a priori statistical belief.

As proposed in [15], we model in this paper the speech signal as
a Guassian distributed and the RTF by means of first-order Markov
model, to account for time-varying channel. By modeling the speech
signal and the channel as latent variables, their posterior distribution
are jointly estimated in the E-step. However, the authors do not adopt
a fully Bayesian model, since the covariances of the source and the
ambient noise are still treated as unknown deterministic parameters,
for which point estimates are computed in the M-step. In addition,
the RTF was estimated using the casual Kalman filter, i.e. using only
past and present observations. In this paper, we propose to extend
the probabilistic model towards the fully Bayesian model. We in-
troduce a hierarchical model which is based on a Gaussian prior for
the speech signal and a Gamma hyperprior for the speech precision.
Furthermore, we assume a Gamma prior for the noise precision. This
way, the precisions are also modeled as latent random variables, for
which posterior distributions are inferred in the E-step. We derive a
VEM algorithm in which a Kalman smoother is used for the infer-
ence of the RTF, as proposed in [16]. This way we exploit all the
available data to estimate the RTF.1

In [17, 18], the authors show that the MCWF estimator of a sin-
gle speech signal can be decomposed into two stages. First, a mul-
tichannel MVDR beamformer that exploits the spatial diversity to
preserve a distortionless response while minimizing the output noise
power; and second, a subsequent single-channel Wiener postfilter
that reduces the residual noise at the output of the first stage by using
the covariance of the speech and the residual noise. Inspired by this
decomposition, we show that the VEM speech estimator can also be
decomposed into an MVDR beamformer, followed by a variational
postfilter, which takes into account the uncertainty in RTF estimate.

2. MULTICHANNEL ACOUSTIC STATE-SPACE MODEL

2.1. Signal Model

The model is formulated in the short-time Fourier transform (STFT)
domain, where k ∈ [1,K] denotes the frequency band, and
` ∈ [1, L] denotes the time frame. Consider a speech signal

1The authors thank Dr. Dionyssos Kounades-Bastian from INRIA,
Grenoble, France for his constructive comments.
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received by N microphones, in a noisy and reverberant acous-
tic environment. The N -channel observation signal x(`, k) =
[X1(`, k), · · · , XN (`, k)]T writes

x(`, k) = S(`, k)a(`, k) + u(`, k), (1)

where S(`, k) is the echoic speech signal as received by the first mi-
crophone (that was arbitrary chosen as the reference microphone),
modeled as a zero-mean Gaussian [19] with time-varying preci-
sion p(S(`, k)|τ(`, k)) = Nc(S(`, k); 0, τ−1(`, k)), a(`, k) =
[1, A2(`, k), · · · , AN (`, k)]T is the RTF vector and u(`, k) =
[U1(`, k), · · · , UN (`, k)]T is a zero-mean multivariate Gaussian
ambient noise with p(u(`, k)|Φu(k)) = Nc(u(`, k); 0,Φu(k)).
The noise covariance matrix is assumed to be time-invariant, mod-
eled by a full-rank coherence matrix multiplied by the noise
power Φu(k) = β−1(k)Γ(k), where β(k) is the time-invariant
inverse noise power and Γ(k) is the time-invariant spatial co-
herence matrix. In this work (as in [20]), a prior knowledge
about the spatial characteristics of the noise is assumed. How-
ever, the power of the noise is an unknown parameter. We as-
sume that Γ(k) can be modeled using a spatially homogeneous
and spherically isotropic sound field [21, 22] plus diagonal load-
ing: Γij(k) = sinc

(
2πfsk
K

dij
c

)
+ εδi−j , where sinc(x) =

sin(x)/x, dij is the inter-distance between microphones i and j,
and ε is the level of diagonal loading. The conditional data dis-
tribution is therefore given by p(x(`, k)|S(`, k),a(`, k), β(k)) =
Nc(x(`, k);S(`, k)a(`, k), β−1(k)Γ(k)).

To account for time-varying channel, we model the RTF as a set
of temporally-linked continuous latent variables, parameterized with
a first-order linear dynamical system (LDS), as in [16]:

p(a(1, k)) = Nc(a(1, k);µa(k),Φa(k)), (2)
p(a(`, k)|a(`− 1, k)) = Nc(a(`, k); a(`− 1, k),Φa(k)), (3)

where µa(k) ∈ CN is the prior mean and Φa(k) ∈ CN×N is the
evolution covariance matrix. For brevity, a(1:L, k) = {a(`, k)}L`=1

denotes the entire sequence of RTFs at frequency k. Also, let X =
{x(`, k)}L,K`,k=1 denotes the set of observations.

2.2. Conjugate Priors

Our hierarchical model is established by introducing priors for the
precision of the speaker and the noise. The conjugate prior for the
precision of a univariate Gaussian is the Gamma probability [12].
Hence, the prior for the speech precision is given by:

p(τ(`, k)) = Gam(τ(`, k); a0(`, k), b0(`, k)). (4)

Each time-frequency (TF) bin is modeled with distinct shape and
rate, to allow the flexibility of modeling local characteristics of the
speech signal. This choice of two-level hierarchical prior can be
further justified by the fact that by marginalizing over the precision
τ(`, k), the true prior distribution of the speech signal turns to be a
Student’s t-distribution [12]. The heavy tailed Student-t prior favors
sparse models, i.e. models with a few nonzero parameters, and thus
was proposed to model speech coefficients [23], which have sparse
distribution in the TF domain. Similarly, we assume a Gamma dis-
tribution as prior for the time-invariant noise precision:

p(β(k)) = Gam(β(k); c0(k), d0(k)). (5)

The graphical model of the proposed probabilistic model is shown
in Fig. 1.

a0(`), b0(`) τ(`) S(`)

µa,Φa a(`)

x(`) β c0, d0

a(`− 1)

Fig. 1: Graphical model (Frequency index is omitted).

3. VEM FOR BEAMFORMING

In this work, the set of hidden variables consists of H ={
S(`, k),a(`, k), τ(`, k), β(k)

}L,K
`,k=1

. The parameter set con-

sists of θ =
{
a0(`, k), b0(`, k), c0(k), d0(k),µa(k),Φa(k)

}L,K
`,k=1

.
Bayesian inference requires the computation of the posterior distri-
bution p(H|X ; θ) = p(X ,H;θ)

p(X ;θ)
.Using Bayes’ rule, the complete-data

distribution writes

p(X ,H; θ) =

L,K∏
`,k=1

(
p
(
x(`, k)|S(`, k),a(`, k), β(k)

)
× p
(
S(`, k)|τ(`, k)

)
p
(
τ(`, k); a0(`, k), b0(`, k)

))
×

K∏
k=1

(
p
(
β(k); c0(k), d0(k)

)
p
(
a(1, k);µa(k),Φa(k)

)
×

L∏
`=2

p
(
a(`, k); a(`− 1, k),Φa(k)

))
. (6)

However, the likelihood p(X ; θ) =
∫
p(X ,H; θ)dH cannot be com-

puted analytically from (6), hence the posterior p(H|X ; θ) cannot be
expressed in closed-form and exact inference becomes intractable.
To tackle this problem, we resort to the approximate variational in-
ference methodology, which circumvents this difficulty by approx-
imating the posterior q(H) ≈ p(H|X ; θ). According to the mean
field theory assumption [24, 25], we assume that the speech signal,
RTF, speech precision and noise precision are conditionally indepen-
dent given the observations. Therefore, the approximate posterior
distribution naturally factorizes as:

q(H) =

L,K∏
`,k=1

(
q(S(`, k))q(τ(`, k))

) K∏
k=1

(
q(β(k))q(a(1:L, k))

)
.

(7)

Given a factorization of q(H) over a partition of latent variables, the
optimal marginal posterior distribution of a subset H0 ⊆ H can be
computed [12] in the E-Step with:

ln q(H0) = Eq(H/H0)[ln p(X ,H; θ)] + const, (8)

where q(H/H0) is the approximation of the joint posterior distri-
bution of all hidden variables, except the subset H0. Subsequently,
q(H) can be inferred for each H0 ⊂ H. Once we have the poste-
rior distributions of the variables in H, the expected complete-data
log-likelihood L(θ) = Eq(H)[ln p(X ,H; θ)] is maximized with re-
spect to the parameters in the M-Step. A detailed derivation of the
algorithm is omitted due to space constraints. In the following, the
frequency index k is omitted for brevity whenever possible.

47



3.1. E-S Step

The approximate posterior distribution of the source is obtained from
(6) and (8) by keeping only the terms that depend on S(`):

ln q(S(`)) = Eq(a(`))q(τ(`))q(β)[ln p(x(`)|S(`),a(`), β)

+ ln p(S(`)|τ(`))] + const, (9)

which can be shown to be a Gaussian distribution: q (S(`)) =

Nc
(
S(`); Ŝ(`),Σs(`)

)
, with

Ŝ(`) =
âH(`)β̂Γ−1x(`)

âH(`)β̂Γ−1â(`) + tr(Σa(`)β̂Γ−1) + τ̂(`)
, (10)

Σs(`) =
(
âH(`)β̂Γ−1â(`) + tr(Σa(`)β̂Γ−1) + τ̂(`)

)−1

, (11)

where â(`),Σa(`), β̂, τ̂(`) are posterior statistics that will be de-
fined in Sections 3.2-3.4. The speech signal can be estimated by the
posterior mean, namely Ŝ(`), with the variance Σs(`). This speech
estimator resembles the form of the MCWF [26, 27]:

ŜMCWF(`) =
âH(`)β̂Γ−1x(`)

âH(`)β̂Γ−1â(`) + τ̂(`)
, (12)

except the term tr(Σa(`)β̂Γ−1). In a similar way to the MCWF
decomposition [17, 18], Ŝ(`) can be decomposed as

Ŝ(`) =
âH(`)β̂Γ−1â(`)

âH(`)β̂Γ−1â(`) + tr(Σa(`)β̂Γ−1) + τ̂(`)︸ ︷︷ ︸
H(`)

× âH(`)Γ−1

âH(`)Γ−1â(`)︸ ︷︷ ︸
wH

MVDR(`)

x(`). (13)

Due to the RTF uncertainty, the speech signal at the output of the
MVDR stage may be distorted. The MCWF treats the RTF esti-
mator â(`) as a point estimator, and thus ignores this uncertainty.
In contrast, the VEM estimator treats the RTF as a latent variable
and considers its posterior distribution, which captures the uncer-
tainty about the parameter estimate. Therefore, it includes H(`) as
a postfilter that takes into account the uncertainty level, expressed
by Σa(`), and weights accordingly the single channel at the MVDR
output. When Σa(`)→ 0, Ŝ(`) reduces to ŜMCWF(`).

3.2. E-a Step

The joint posterior of the RTF sequence is similarly obtained by
keeping only the terms that depend on a(1:L):

ln q(a(1:L)) =

L∑
`=1

Eq(S(`))q(β) [ln p(x(`)|S(`),a(`), β)]

+ ln p(a(1:L)) + const. (14)

It can be shown that the first term reduces to a Gaussian distribu-
tion, and thus the posterior distribution is an LDS along the frames,
as in [16]. Hence, the marginal posterior distribution of each frame
is also a Gaussian distribution, q(a(`)) = Nc(a(`); â(`),Σa(`)),
which can be recursively calculated using the Kalman smoother
[12]. The RTF can therefore be estimated by the posterior mean,
namely â(`), with uncertainty Σa(`). The pair-wise joint poste-

rior distribution of two successive frames will be required to up-
date Φa in Section 3.5. Marginalizing out all other frames in
(14) results with a Gaussian distribution, q(a(`),a(` − 1)) =

Nc
([

a(`)T ,a(`− 1)T
]T

; aξ(`),Σξ(`)
)
. For the sake of clarity,

note that â(`) ∈ CN ,Σa(`) ∈ CN×N ,aξ(`) ∈ C2N and Σξ(`) ∈
C2N×2N are the mean and the covariance of the marginal and pair-
wise posterior distributions, respectively. The second-order joint
posterior moment is defined asQ(`) = Σξ(`) + aξ(`)a

H
ξ (`).

3.3. E-τ Step

Using (6) and (8), the posterior distribution of the speech precision
writes:

ln q(τ(`)) = Eq(S(`))[ln p(S(`)|τ(`))] + ln p(τ(`); a0(`), b0(`))

+ const, (15)

which can be shown to be a Gamma distribution: q(τ(`)) =
Gam(τ(`); ap(`), bp(`)), with

ap(`) = a0(`) + 1 , bp(`) = b0(`) + ̂|S(`)|2. (16)

We therefore obtain the posterior mean estimate for the source pre-
cision as:

τ̂(`) =
ap(`)

bp(`)
=

a0(`) + 1

b0(`) + ̂|S(`)|2
, (17)

where a0(`), b0(`), the prior parameters, are updated in the M-Step.
It should be noted that treating the speech precision as an unknown
deterministic parameter as in [15], leads to the following point es-
timator τ̂D(`) = 1/ ̂|S(`)|2. It is instructive to relate the varia-
tional solution to the deterministic one. To do this, consider the
marginal case where the parameters are fixed to very small values,
i.e. a0(`) = b0(`) = 0, in which the VEM posterior estimator
coincides with the deterministic estimator. This equivalence can be
explained by the fact that a non-informative prior is obtained for the
Gamma distribution as the special case a0(`) = b0(`) = 0, since it
corresponds to the limit of an infinitely broad prior [12].

3.4. E-β Step

Similarly, the posterior distribution of the noise precision writes:

ln q(β) =

L∑
`=1

Eq(S(`))q(a(`)) [ln p(x(`)|S(`),a(`), β)]

+ ln p(β; c0, d0) + const, (18)

which can be shown to be a Gamma distribution: q(β) =
Gam(β; cp, dp), with

cp = c0 +NL, (19)

dp = d0 +

L∑
`=1

(
xH(`)Γ−1x(`)

− xH(`)Γ−1Ŝ(`)â(`)− âH(`)Ŝ∗(`)Γ−1x(`)

+ ̂|S(`)|2
(
âH(`)Γ−1â(`) + tr(Σa(`)Γ−1)

))
. (20)

We therefore obtain the posterior mean estimate for the noise preci-
sion as:

β̂ =
cp
dp

=
c0 +NL

dp
. (21)
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Treating the inverse noise power as an unknown deterministic pa-
rameter leads to the following point estimator:

β̂−1
D =

1

NL

L∑
`=1

(
xH(`)Γ−1x(`)

− xH(`)Γ−1Ŝ(`)â(`)− âH(`)Ŝ∗(`)Γ−1x(`)

+ ̂|S(`)|2
(

âH(`)Γ−1â(`) + tr
(
Σa(`)Γ−1))). (22)

Note that dp = d0 +NLβ̂−1
D , hence (21) becomes β̂ = c0+NL

d0+NLβ̂
−1
D

.

Letting c0, d0 approach zero, β̂ = β̂D.

3.5. M Step

Once we have the posterior distributions of the hidden vari-
ables, the expected complete-data log-likelihood L(θ) =
Eq(H) [ln p(X ,H; θ)] is maximized with respect to the prior param-
eters. We obtain the following closed-form expressions:

a0(`) = Ψ−1

(
Ψ(ap(`)) + ln

b0(`)

bp(`)

)
, b0(`) =

a0(`)

ap(`)
bp(`),

c0 = Ψ−1

(
Ψ(cp) + ln

d0
dp

)
, d0 =

c0
cp
dp,

µa = â(1),

Φa =
1

L

(
Σa(1) +

L∑
`=2

(
Q11(`)−Q12(`)−Q21(`)

+Q22(`)
))

, (23)

where Ψ(·) is the digamma function and the four Qnp(`), (n, p) ∈
{1, 2} are N ×N non-overlapping subblocks ofQ(`).

4. PERFORMANCE EVALUATION

4.1. Simulation Setup

We assess the performance of the proposed algorithm for a static
scenario, and compare it with [15]. For the simulations, RIRs were
downloaded from an open-source database recorded in our lab [28].
The room dimensions were 6 × 6 × 2.4 m and the tested reverber-
ation times were set to T60 = [0.16, 0.36] sec. A loudspeaker was
positioned at a distance of 1 m from uniform linear array (ULA) with
N = 8 microphones, at angle 90◦ (endfire). The inter-distances be-
tween the microphones were 8 cm. Utterances from five female and
five male speakers were drawn from the TIMIT database [29] (each
sentence being 3-5 sec long), then convolved with the RIRs. For
the additive noise, we used a stationary noise signal with speech-like
spectrum from NOISEX-92 database [30], and applied the method
described in [22] to produce diffuse noise field, with various signal
to noise ratio (SNR) levels. The sampling frequency was 8 kHz, the
frame length of the STFT was 128 ms with 32 ms between succes-
sive time frames. The number of VEM iterations was fixed to 15.

4.2. Performance Measures

The speech enhancement performance is evaluated in terms of
two common objective measures, namely perceptual evaluation of
speech quality (PESQ) [31], and log-spectral distance (LSD). Low

Table 1: PESQ Scores for T60 of 0.16 s (Left) and 0.36 s (Right)

T60 = 0.16sec T60 = 0.36sec
Alg.\SNR −5dB 0dB 5dB 10dB −5dB 0dB 5dB 10dB

Unprocessed 1.3 1.5 1.8 2.2 1.4 1.6 1.9 2.4
Baseline [15] 2.3 2.6 2.9 3.2 2.4 2.7 3.0 3.3

Proposed 2.6 3.0 3.4 3.7 2.7 3.0 3.4 3.5
Oracle MCWF 3.5 3.7 3.8 3.9 3.6 3.6 3.7 3.7

Table 2: LSD Results for T60 of 0.16 s (Left) and 0.36 s (Right)

T60 = 0.16sec T60 = 0.36sec
Alg.\SNR −5dB 0dB 5dB 10dB −5dB 0dB 5dB 10dB

Unprocessed 12.2 9.2 6.6 4.5 12.4 9.6 7.0 4.8
Baseline [15] 4.9 4.5 4.1 3.8 5.7 5.3 4.9 4.7

Proposed 3.8 3.5 3.5 3.5 4.6 4.4 4.3 4.3
Oracle MCWF 1.9 1.4 1.0 0.8 2.7 2.3 2.1 2.0

Table 3: NPM Results for T60 of 0.16 s (Left) and 0.36 s (Right)

T60 = 0.16sec T60 = 0.36sec
Alg.\SNR −5dB 0dB 5dB 10dB −5dB 0dB 5dB 10dB

Baseline [15] -2.3 -3.0 -3.6 -4.2 -2.1 -2.7 -3.1 -3.5
Proposed -6.3 -7.9 -9.4 -9.9 -5.9 -7.3 -8.8 -9.1

LSD indicates a high speech quality. The quality of the RTF estimate
was assessed with the normalized projection misalignment (NPM)
measure [32]. All the measures were computed by averaging the
results obtained using the 10 speakers.

4.3. Results

PESQ and LSD scores are presented in Tables 1 and 2, respectively,
for several SNR levels. NPM results are presented in Table 3. The
advantage of using the proposed method is demonstrated for all SNR
levels. To demonstrate the effectiveness of the proposed algorithm,
the results of an MCWF with true parameters are also presented. We
refer to this algorithm as the oracle algorithm, since it knows a priori
the RTF and the covariances of the speech and the noise signals, in-
formation that is not available to the fully blind VEM algorithm. The
results obtained for this oracle method can be considered as the best
achievable results. Audio examples are available on our website.2

5. CONCLUSIONS

In this paper, we have presented a hierarchical Bayesian model for
blind beamforming in a multichannel audio scenario. The model
extends [15] to include the speech precision and the ambient noise
precision as part of the hidden data. The inference of the hidden
variables is performed using a variational EM algorithm, leading to
a variant of MCWF for estimating the source and a Kalman smoother
for the acoustic channel. The speech estimator was decomposed into
an MVDR beamformer followed by a variational postfilter. The pro-
posed method was tested in a room with a reverberation time of 0.16
sec and 0.36 sec for several SNR levels. In terms of the objective
performance measures as well as an informal listening test, the pro-
posed method outperforms the baseline method for the considered
scenarios. In terms of NPM, the proposed algorithm offers improve-
ment by 4 to 6 dB over the causal Kalman filter in [15].

2http://www.eng.biu.ac.il/gannot/speech-enhancement/
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