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ABSTRACT

Utterance level permutation invariant training (uPIT) tech-
nique is a state-of-the-art deep learning architecture for
speaker independent multi-talker separation. uPIT solves
the label ambiguity problem by minimizing the mean square
error (MSE) over all permutations between outputs and tar-
gets. However, uPIT may be sub-optimal at segmental level
because the optimization is not calculated over the individual
frames. In this paper, we propose a constrained uPIT (cu-
PIT) to solve this problem by computing a weighted MSE
loss using dynamic information (i.e., delta and acceleration).
The weighted loss ensures the temporal continuity of output
frames with the same speaker. Inspired by the heuristics (i.e.,
vocal tract continuity) in computational auditory scene analy-
sis, we then extend the model by adding a Grid LSTM layer,
that we name it as cuPIT-Grid LSTM, to automatically learn
both temporal and spectral patterns over the input magnitude
spectrum simultaneously. The experimental results show
9.6% and 8.5% relative improvements on WSJ0-2mix dataset
under both closed and open conditions comparing with the
uPIT baseline.

Index Terms— Constrained Permutation Invariant Train-
ing, Grid LSTM, Single Channel Speech Separation.

1. INTRODUCTION

Human listeners with normal hearing have the ability to fo-
cus their auditory attention on a specific signal in a complex
acoustic environment, i.e., a conversation with background
noise and competing speech. However, such a problem,
known as the cocktail party problem [1], is not trivial to solve
by a machine. However, a machine solution is required in
a large number of applications, such as automatic meeting
transcription and hearing aids.

Inspired by the findings on how human listeners sepa-
rate sources in an acoustic mixture, initial works of compu-
tational auditory scene analysis (CASA) [2, 3] methods were
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proposed based on heuristics, e.g., pitch continuity. Another
non-negative matrix factorization (NMF) [4, 5, 6] techniques
reconstruct each source using non-negative dictionaries and
activations. However, these methods not only rely on accurate
trackers (i.e., pitch tracker) but also intensive computation.

In the past years, several deep learning based techniques
were proposed for single channel multi-talker speech separa-
tion. A speaker dependent system in [7] achieves good per-
formance in closed-set speaker-dependent condition. How-
ever, speaker independent separation of two or more speak-
ers remains an open and challenging task. The deep clus-
tering (DC) [8] technique was proposed to solve the prob-
lem that showed competitive results. With the assumption
that each time-frequency (TF) bin is dominated by a single
speaker, the DC method uses bidirectional long-short term
memory (BLSTM) to project the spectrogram of the mixture
to an embedding space, in which TF bins of different speakers
are clustered by using K-means to obtain speaker-dependent
mask. The masks are then applied on the mixture to obtain
the speech of individual speakers. To overcome the drawback
of binary mask, the soft masks are estimated by an enhance-
ment network stacked on the top of the DC system to further
improve the performance in [9]. One shortcoming of DC is
that its objective function is defined in the embedding space,
which may not be optimal for the speech separation task.
Then deep attractor network (DANet) [10] method was pro-
posed to solve this limitation by separating signals directly. It
creates attractor points in high dimensional embedding space
to group the TF bins belonging to each source together. Un-
fortunately, this method adds the complexity of forming the
attractor to the run-time process.

Recently, permutation invariant training (PIT) [11] and ut-
terance level PIT (uPIT) [12] were introduced to solve the
speech separation problem with end-to-end training. The PIT
method solves the label ambiguity problem by minimizing the
mean square error (MSE) over all permutation at frame level
in the training stage, but it suffers from frame-level permu-
tation problem during inference. The uPIT method was pro-
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posed to solve the problem by forcing the separated frames
belonging to the same speaker to be aligned to the same out-
put stream using BLSTM with an utterance level training cri-
terion. However, such utterance level training criterion may
not be optimal becuase some frames belonging to speaker A
may be aligned to the output stream of speaker B.

In this paper, we propose a constrained uPIT (cuPIT) to
solve the aforementioned problem by using a cost function
that penalizes unnatural temporal structure of the separated
speech spectrum. In addition to the MSE cost function of
uPIT, we also introduce the MSE between the separated spec-
trogram and the target spectrogram in the dynamic features
domain. The dynamic features, e.g. the delta and acceleration
features, were originally proposed to capture speech context
information for the speech recognition task [13]. By mini-
mizing the MSE in the dynamic feature domain, we ensure
that the separated spectrogram has similar temporal structure
as the target spectrogram. To capture the heuristic patterns
in frequency domain, e.g., common onset/offset, this paper
also proposes to add a grid LSTM [14, 15, 16] in the cuPIT
model to learn corresponding temporal and spectral patterns
from the magnitude spectrum both in time and frequency axis
simultaneously.

Section 2 describes the monaural speech separation prob-
lem. The details of the proposed model are discussed in Sec-
tion 3. Section 4 introduces the experimental setup and the
results. Finally, conclusions are drawn in Section 5.

2. MONAURAL SPEECH SEPARATION BY TF
MASKING

The task of monaural speech separation aims to separate a lin-
early mixed single channel microphone signal y(n) into indi-
vidual source signals xs(n), s ∈ [1, S].

y[n] =

S∑
s=1

xs[n] (1)

The goal is to estimate x̂s[n] that is close to xs[n]. How-
ever, the optimization is difficult in time domain. With the
assumption that speech is sparse in the spectrogram repre-
sentation, the mixture is transformed to frequency domain as
Y (t, f) for each TF bin (t, f). According to the commonly
used masking approach, the magnitude |X̂s(t, f)| of individ-
ual source is estimated by

|X̂s(t, f)| =Ms(t, f)� |Y (t, f)| (2)

where� indicates element-wise multiply. Then the estimated
magnitude |X̂s(t, f)| and the phase of mixed speech ∠Y (t, f)
are used to reconstruct the time domain waveform x̂s[n] by an
inverse discrete Fourier transform and an overlap and add op-
eration. Since the phase estimation is still an open problem in
speech separation or speech enhancement, the phase of mixed
speech is directly used.
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Fig. 1: The proposed cuPIT-Grid LSTM system architecture
for training. During run-time testing, the upper dotted box is
not necessary. The systems takes input mixture and outputs
output1 and output2.

3. CUPIT-GRID LSTM SYSTEM

In speech separation task, the state-of-the-art methods (i.e.,
DC [8, 9] 1, DANet [10], PIT [11], uPIT [12]) commonly
estimate a mask for each individual source. In this paper,
we propose to estimate magnitude spectrum approximation
masks with a constrained uPIT in the cost function and a grid
LSTM network to explore the temporal-spectral patterns, as
shown in Figure 1.

3.1. Grid LSTM
The grid LSTM[14, 15, 16] features separate LSTMs that
move in both time and frequency axis. The grid frequency
LSTM (gF-LSTM) and grid time LSTM (gT-LSTM) commu-
nicate through activations of previous time step and previous
frequency step. When the peephole operation is applied, the
cell memories of previous time and frequency steps are used
to computing the weights for controlling the gates. In the fre-
quency axis, we use a sliding window of F (i.e., 29) with a
stride of A (i.e., 10) on the frequency features (N = 129).
The gF-LSTM is thus unrolled over frequency by an amount
of B = (N − F )/A + 1. For each time frequency step
(t, k), t ∈ [1, T ], k ∈ [1, B], the grid LSTM in dimension
j, j ∈ {t, k} is defined as,

Hu,t,k =W
(t)
uh h

(t)
t−1,k +W

(k)
uh h

(k)
t,k−1, u ∈ {i, f, c, o} (3)

Cu,t,k =W (t)
uc c

(t)
t−1,k +W (k)

uc c
(k)
t,k−1, u ∈ {i, f} (4)

i
(j)
t,k = σ(W

(j)
ix yt,k +Hi,t,k + Ci,t,k + b

(j)
i ) (5)

f
(j)
t,k = σ(W

(j)
fx yt,k +Hf,t,k + Cf,t,k + b

(j)
f ) (6)

1The masks are obtained by clustering the embeddings of each TF bin
using K-means.
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o
(j)
t,k = σ(W (j)

ox yt,k+Ho,t,k+W
(t)
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(t)
t,k+W

(k)
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(k)
t,k+b

(j)
o ) (9)

h
(j)
t,k = o

(j)
t,k � σ(c

(j)
t,k) (10)

In this paper, the weight matrices are shared among the time
and frequency cells to reduce the computation. Finally, at
each time step t, the outputs of the gF-LSTM {h(k)t,1 , ..., h

(k)
t,B}

and gT-LSTM {h(t)t,1, ..., h
(t)
t,B} are concatenated and given

to the linear dimensionality reduction layer, followed by
BLSTM.

3.2. Constrained uPIT
In the mask estimation layer, we use the ideal phase sensi-
tive mask (IPSM) [17] that considers the phase differences
between the mixture and individual sources. For each TF bin
(t,f), the IPSM is estimated as

Ms(t, f) =
|Xs(t, f)|cos(θy(t, f)− θs(t, f))

|Y (t, f)|
(11)

Previous work has shown that the masks trained with the mag-
nitude spectrum approximation loss outperform those with
the least square loss between the estimated and ideal masks
[18]. When the magnitude spectrum approximation loss is
applied, the training criterion will be the MSE between the
estimated magnitude and true magnitude with phase differ-
ence.

J =
1

T

S∑
s=1

||M̂s � |Y | − |Xs| � cos(θy − θs)||2F (12)

where || · ||F is the Frobenius norm.
In this paper, we propose a constrained cost function by

adding weighted MSE of dynamic features between estimated
magnitude and target magnitude with phase difference.

Jc,φp(s) =
1

T

S∑
s=1

(||M̂s � |Y | − |Xφp(s)| � cos(θy − θφp(s))||
2
F

+ wD||fD(M̂s � |Y |)− fD(|Xφp(s)| � cos(θy − θφp(s)))||
2
F

+ wA||fA(M̂s � |Y |)− fA(|Xφp(s)| � cos(θy − θφp(s)))||
2
F )

(13)
where φp(s), p ∈ [1, P ] is an assignment of target source (s)
to an output, and P = S! is the number of all permutations.
wD, wA are the weights for delta and acceleration. The con-
strain function is defined as

fD(v(t)) =

∑L
l=1 l × (v(t+ l)− v(t− l))∑L

l=1 2l
2

(14)

whereL is the order and sets as 2 in this study. fA(·) represent
the computations of fD(·) twice.

Since the dynamic features are computed from a context
window, we prevent speakers from switching in the same out-
put streams. This is actually a novel application of dynamic
features in the cost function, although it has been used for
speech enhancement [19], where there is no speaker switch-
ing problem.

To solve the label ambiguity problem, the optimal assign-
ment is done by choosing the minimal constrained cost among
all permutations (P ). For instance, the costs of 2! = 2 per-
mutations (error1, error2 when p=1 and 2) are considered in
Figure 1.

p̂ = argmin
p∈P

Jc,φp(s) (15)

And the final constrained cost used to optimize the network is
obtained with the optimal assignment.

J = Jc,φp̂(s) (16)

4. EXPERIMENTS AND DISCUSSION

4.1. Experimental Setup
We evaluated the methods on the WSJ0-2mix dataset 2 [8],
which was mixed by randomly choosing utterances of two
speakers from the WSJ0 corpus [20]. In this paper, the
WSJ0-2mix (two-speaker mixed) dataset was divided into
three sets: training set (20, 000 utterances ≈ 30h), devel-
opment set (5, 000 utterances ≈ 8h), and test set (3, 000
utterances ≈ 5h). Specifically, the training and development
set were generated by randomly selecting utterances from
50 male and 51 female speakers in the WSJ0 training set
(si tr s) at various signal-to-noise (SNR) ratios uniformly
chosen between 0dB and 5dB. Similar as generating training
and development set, the test set was created by mixing the
utterances from 10 male and 8 female speakers in the WSJ0
development set (si dt 05) and evaluation set (si et 05). Be-
cause the speakers in the development set were the same as
those in the training set, we use the development set in closed
condition (CC) to tune parameters. Moreover, as the speakers
in the test set were different from those in the training and de-
velopment sets, the test set was considered as open condition
(OC) evaluation.

The sampling rate of all generated data is 8kHz. The in-
put 129-dim spectral magnitude features of the mixed speech
were computed by a STFT with the normalized square root of
the 32ms length hamming window and 16ms window shift.
The magnitudes of two targets were obtained in the same way.

In this work, 3 BLSTM layers with 896 units in each layer
were deployed to keep the network configuration same as the
baseline in [12]. The mask estimation layer used ReLU as the
activation function. The units of the Grid LSTM cell were set
to 64. Then the outputs from the Grid LSTM layer were given
to a linear layer, which reduced the dimension of the outputs
from 1408 to 896. A random dropout with a dropout rate of

2Available at: http://www.merl.com/demos/deep-clustering
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0.5 was used in the Grid LSTM and BLSTM 3. The weight
wD and wA were tuned to be 4.5 and 10. The learning rate
was initialized as 0.0005 and scaled down by 0.7 when the
training loss increased on the development set. Each mini-
batch had 16 randomly selected utterances. The number of
minimum epoch was set to 30 and the early stopping criterion
was that the relative loss improvement was lower than 0.01.
The model was optimized with Adam algorithm [21] and im-
plemented using Tensorflow 4.

In this work, performance was evaluated with global nor-
malized signal-to-distortion ratio (GNSDR, same as “SDR
improvement” in [8, 9, 11, 12]) using the toolbox in [22].

4.2. Experimental Results
4.2.1. Constrained uPIT vs. Conventional uPIT
Table 1 shows the GNSDR comparisons between our pro-
posed approach and other state-of-the-art methods on the
WSJ0-2mix database. The similar performances of the
DANet, DC+ and uPIT-BLSTM method are observed. We
consider uPIT-BLSTM as a benchmarking reference, there-
fore, we re-implement uPIT-BLSTM with our experiment
setup and obtain a similar result to [12]. In our implemen-
tation, we add a dense layer between the input layer and the
first BLSTM layer. The ideal ratio mask (IRM) and IPSM are
also evaluated to show the upper bounds.

With the proposed constraints added in the cost func-
tion, our constrained uPIT-BLSTM (cuPIT-BLSTM) method
achieves better performance than uPIT-BLSTM using the
same network configuration. The constrained cost function
not only ensures the estimated magnitude of the frames is
close to its target, but also their delta and acceleration. Since
the dynamic information is computed with a context window,
it provides a constraint to ensure that the output frames of the
same speaker do not jump to the other speaker.

4.2.2. Effect of Grid LSTM
Since the magnitude patterns (i.e., onset, harmonic and for-
mant) of a speaker are corresponding in frequency domain,
the handcrafted rules are created according to these patterns in
CASA methods. Inspired by these rules, we proposed to use
a Grid LSTM to learn such rules from those patterns in time
and frequency automatically. Since the Grid LSTM can learn
temporal and spectral patterns simultaneously, we replace the
dense layer in cuPIT-BLSTM by a Grid LSTM layer and a lin-
ear dimension reduction layer, named as cuPIT-Grid LSTM.
It achieves 10.2dB and 10.1dB GNSDR under closed and
open conditions as shown in Table 1. Compared with cuPIT-
BLSTM, a further 3% relative improvement is obtained un-
der the open condition. It shows the effectiveness of the Grid
LSTM in learning temporal and spectral patterns. By addi-
tional training epochs with a reduced dropout rate of 0.3, the

3The dropout was not applied across time steps, although it was known to
be effective and used in [9].

4https://www.tensorflow.org/

Table 1: GNSDR (dB) in a comparative study of different
separation methods on the WSJ0-2mix dataset with optimal
frame level assignment or default assignment on closed (CC)
and open (OC) conditions. ∗ indicates our re-implementation
of the work in [12].

Method Opt Assign Def Assign
CC OC CC OC

DC [8] - - 5.9 5.8
DC+ [9] - - - 9.4

DANet [10] - - - 9.6
PIT-DNN [11] 7.3 7.2 5.7 5.2
PIT-CNN [11] 8.4 8.6 7.7 7.8

uPIT-BLSTM [12] 10.9 10.8 9.4 9.4
uPIT-BLSTM∗ 10.8 10.7 9.6 9.5
cuPIT-BLSTM 11.1 11.0 10.0 9.8

cuPIT-Grid LSTM 11.2 11.2 10.2 10.1
cuPIT-Grid LSTM-RD 11.3 11.3 10.3 10.2

IRM 12.4 12.7 12.4 12.7
IPSM 14.9 15.1 14.9 15.1

performance is further improved (-RD model in Table 1). Fi-
nally, the proposed approach achieves an accumulated 9.6%
and 8.5% relative improvement over the uPIT-BLSTM [12]
under closed and open conditions, respectively.

4.2.3. Different vs. Same Gender
The performances of the mixtures with speakers under differ-
ent and same gender conditions are reported in Table 2. The
proposed techniques improve the performance consistently
in both different and same gender conditions and achieve
12.0dB and 8.2dB GNSDR under open condition. Since
the characteristics of same gender speakers are closer than
those of different gender (i.e., pitch), the GNSDR of same
gender is lower than that of different gender. We note that
same gender mixed speech separation remains a difficult task.
However, we are encouraged by the fact that our proposed
system achieves a 12.3% and a 4.3% relative improvement
for same and different gender over the uPIT-BLSTM baseline
under open condition.

Table 2: GNSDR (dB) in a comparative study of same and
different gender combinations on WSJ0-2mix development
and test sets (Def Assign.).

Method CC OC
Same Diff Same Diff

uPIT-BLSTM∗ 7.8 11.5 7.3 11.5
cuPIT-BLSTM 8.3 11.8 7.7 11.7

cuPIT-Grid LSTM 8.5 11.9 8.1 11.8
cuPIT-Grid LSTM-RD 8.6 12.0 8.2 12.0

IRM 12.2 12.7 12.4 12.9
IPSM 14.6 15.1 14.9 15.3

5. CONCLUSION

In this paper, we proposed a constrained cost function in
uPIT with Grid LSTM to separate speakers in a single chan-
nel mixed speech signal. Experimental results show that our
proposed method not only achieves the better performance
than the conventional uPIT model, but also outperforms the
current state-of-the-art DANet and DC. Moreover, we also
find the effectiveness of our proposed method on the same
gender mixed speech separation task.
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