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ABSTRACT

Genuine full-duplex operation requires effective mitigation of self-

interference (SI) due to simultaneous transmission and reception at

the same frequency band. In addition to its well-known harmful ef-

fect on signals of high peak-to-average power ratio, nonlinear be-

havior of a power amplifier (PA) complicates SI cancellation and

induces spectral regrowth. We introduce a digital predistortion ar-

chitecture that linearizes the response of the PA in a full-duplex

transceiver. Specifically, we propose a two-step procedure to esti-

mate the predistorter parameters and the SI canceller coefficients.

Different from a direct application of conventional predistorters, the

proposed architecture does not need an extra RF chain to estimate

the PA response and exploits the inherent SI signal instead. Fi-

nally, simulation results show that the proposed scheme is able to in-

crease significantly the signal-to-interference-plus-noise ratio at the

transceiver output and to reduce out-of-band emissions when com-

pared to linear and nonlinear cancellation without predistortion.

Index Terms— Full duplex, self-interference, nonlinear distor-

tion, spectral regrowth, digital predistortion.

1. INTRODUCTION

Requirements of high data rates and network capacity over an in-

creasingly saturated radio spectrum motivates full-duplex technol-

ogy. The concept promises to increase the spectral efficiency by

allowing simultaneous transmission and reception in the same band.

Hence, data rate per allocated spectrum unit is ideally doubled w.r.t.

conventional time- or frequency-division duplexing.

The implementation of the full-duplex mode is, however, chal-

lenging due to the strong self-interference (SI) produced by the trans-

mitted signal that is coupled to the receiver front-end [1]. There

are several options for removing the strong self-interference sig-

nal [2]. Usually passive/active antenna cancellation techniques to-

gether with RF canceller [3] are first employed to mitigate the SI at

the input of the receiver chain and alleviate the requirements of the

low-noise amplifier and the analog-to-digital converter (ADC). After

that, an additional cancellation stage based on digital signal process-

ing (DSP) is implemented to cope with residual interference [4, 5].

Linear, widely-linear and nonlinear DSP cancelers have already

been studied for the residual SI cancellation. Specifically, nonlinear

cancelers can remove nonlinear distortion effects generated by the

transmitter PA and other imperfections of the transmitter chain [6,7].

These techniques outperform basic linear cancellers in terms of in-

band distortion cancellation, reaching isolation levels larger than 100

dB when combined with antenna and RF cancellation techniques.

Despite offering promising in-band performance, available so-

lutions do not consider the out-of-band distortion generated by the

PA nonlinearity. Even when the in-band distortion is removed by

a nonlinear canceler, the spectral regrowth increases when the PA

is driven into power-efficient operation point. The resulting out-of-

band emission reduces the spectral efficiency of full-duplex relays,

because guard bands are needed to limit adjacent channel interfer-

ence.

In this paper we introduce a predistorter (PD) to linearize the

behaviour of the PA so that it can operate in its power-efficient re-

gion with moderate out-of-band distortion. While simplest PD struc-

tures are memoryless, such that the current output depends only on

the current input [8], broadband implementations introduce memory

effects that need to be considered: Volterra, Wiener, and Wiener-

Hammerstein models as well as memory polynomials are generally

used for these cases [9, 10]. Due to its generic modeling capabil-

ities, we use here the Wiener-Hammerstein model to represent the

behavior of the PA and the self-interference channel.

In contrast to previous full-duplex PD design [11], the proposed

architecture does not need an extra RF chain to estimate the PA re-

sponse and exploits the inherent SI signal instead. In particular, we

propose a two-step procedure to estimate PD and SI parameters.

First, using a low peak-to-average-power ratio training sequence,

the linear part of the models related to the SI channel and the PA

are estimated. Then, the PA nonlinearity is identified using a sim-

ple recursive algorithm. Besides significantly improving signal-to-

interference-plus-noise ratio (SINR) at the relay output, our predis-

torter is also able to reduce the spectral regrowth and enhance the

quality of the desired signal transmitted to a distant receiver.

2. SYSTEM MODEL

In this work, we consider a complete two-hop link composed of a

source node, a full-duplex relay node and a destination node. The

full-duplex mode allows the relay to receive and forward signals si-

multaneously in the same frequency band. Additionally, the relay

performs non-regenerative processing such that each received or-

thogonal frequency-division multiplexing (OFDM) symbol is am-

plified and then retransmitted to the destination.

The received signal at the relay input is the following:

yR(n) = hSR(n) ∗x(n)+hSI(n) ∗ p(yR(n−D))+wR(n) (1)

where x(n) is the N -subcarrier OFDM signal from the source node,

hSR(n) is the source-relay channel, hSI(n) models the loopback

coupling channel, p(·) defines the operation executed at the relay

based on the input signal yR(n − D) delayed by D-samples, and

wR(n) is white Gaussian noise. In case of the amplify-and-forward

relay,

p(yR(n−D)) = βyR(n−D) (2)

where β is a scalar gain.
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ĤSIeq
(z)

1/Ha(z)

HSI (z)

f[·]
soi(n)

wR(n)

si(n)
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Fig. 1. Block diagram of full-duplex relay node with memory pre-

distorter

At the destination, we have

yD(n) = hRD(n) ∗ βyR(n−D) + hSD(n) ∗ x(n) +wD(n) (3)

where hRD(n) and hSD(n) represent the relay-destination and

source-destination channels, respectively, and wD(n) denotes Gaus-

sian noise at the receiver.

The self-interference term hSI(n) ∗ βyR(n − τ) needs to be

mitigated to allow the relay to operate in FD mode. We assume that

passive/active antenna cancellation and RF cancellation are included

in this scenario such that, hSI(n) denotes the residual channel before

DSP cancellation.

3. IDENTIFICATION TECHNIQUE FOR

SELF-INTERFERENCE CHANNEL AND PA PARAMETERS

We assume that the nonlinear amplifier is the dominant RF impair-

ment. Thus, the down- and up-conversion processes, and the analog

to digital conversion are assumed to be ideal.

3.1. Nonlinear PA Model

PA response includes memory effects represented by a Wiener-

Hammerstein (W-H) model. The Wiener-Hammerstein model con-

sists of a cascade of a linear filter ha(n), and a nonlinear static

function g[·] followed by another linear filter hb(n). Herein, ha(n)
and hb(n) are FIR filters of length La and Lb, respectively. The

transmitted signal yR(n) can now be expressed as

yR(n) =

Lb
∑

m=0

hb(m)g[r̃(n−m)] (4)

where r̃(n) =
∑La

m=0 ha(m)r(n−m).
The static non-linearity is modeled as a P -th order polynomial

with coefficients {g2k+1}
K
k=0, described by

g[s(n)] =
K
∑

k=0

g2k+1φ2k+1[r̃(n)] (5)

where φ2k+1[r̃(n)] = r̃(n)|r̃(n)|2k with

2k + 1 =

{

P P even

P − 1 P odd

3.2. Proposed Identification Technique

In this subsection, an identification technique of PA parameters and

self-interference channel is proposed. Specifically, the required pa-

rameters to implement the PD and SI canceller, as illustrated in Fig. 1

are:

• Equivalent self-interference channel: the channel estimate

is employed by the DSP canceller to remove the self-

interference signal. It is composed by the cascade of Hb(z),
HSI(z), and the LNA.

• Power amplifier model: the estimates of Ha(z) and the in-

verse of nonlinear block g[·], denoted by f [·], are used to im-

plement a PD that linearizes the PA.

The required parameters are estimated during a short initializa-

tion period operating in a half-duplex manner. The wireless channel

and PA parameters are assumed to be time-invariant so that they need

not be tracked.

A two-step procedure for the identification is proposed. The first

step employs a training sequence with low PAPR that allows to es-

timate the linear cascade of Ha(z), Hb(z), and HSI(z) without the

influence of the nonlinear static block g[·]. Then in the second step,

the static nonlinearity f [·] and the linear filter Ha(z) are identified.

3.2.1. Estimation of the linear equalizer coefficients (Step 1)

To obtain a reliable estimate of the linear cascade it is important that

training symbols are not affected by the nonlinearity g[·]. By using a

low PAPR sequence, generated by using a set of T active subcarriers,

where T < N , the PA mostly operates in the linear region. In this

case, the received signal can be written as:

y(n) =ha(n)⊛ hb(n)⊛ hsi(n)⊛ xT (n) + wR(n) (6)

where ⊛ is the circular convolution and xT (n) is the training se-

quence.

A block diagram of the linear cascade estimation block is shown

in Fig. 2. The objective is to design an equalizer, denoted by Ψ,

that compensates for the memory-channel effects in order to get

yeq(n). To this end, we define a 1 × Lz equalizer vector Ψ =
[ψ(0), ψ(1), . . . , ψ(Lz − 1)].

After the equalization, the output can be written as

yeq(n) = Ψy(n) (7)

where y(n) = [y(n), y(n− 1), . . . y(n− Lz)]
T is the received sig-

nal. Equalizer coefficients are calculated using the least-squares (LS)

criterion as

Ψ =
(

Y
H
Y
)

−1

Y
H
xT (8)

where Y is a L× Lz matrix

Y = [y(0),y(1), · · · ,y(L− 1)] (9)

xT = [xT (0), xT (1), . . . xT (L− 1)]T is the training sequence, and

L is the number of samples employed for equalizer estimation (train-

ing sequence length). Instead of LS estimate, it is possible to use a

recursive least-squares (RLS) algorithm or some conventional fre-

quency domain channel estimation technique.
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Fig. 2. a) Linear cascade identification (Step 1) and b) nonlinear

block identification (Step 2).

3.2.2. Estimation of the NL block (Step 2)

In order to estimate the nonlinear block, a normal OFDM sequence

that excites the PA in its complete dynamic range is employed. In

the absence of noise and assuming perfect equalization, the two se-

quences x(n) and yeq(n) are related as follows

yeq(n) = g[x(n)⊛ ha(n)]⊛ hb(n)⊛ hSI(n)⊛ ψ(n)

= g[x(n)⊛ ha(n)]⊛ {ha}
−1(n) (10)

where {ha}
−1(n) denotes the inverse of the filter ha(n). This ob-

servation allows to estimate Ha(z) and g−1[·] using the structure

in Figure 2 b) [12]. The proposed algorithm minimizes the error

e(n) = ŝ1(n)− ŝ2(n) between

ŝ1(n) =
P
∑

k=0

f2k+1(n)φ2k+1[û(n)]

ŝ2(n) = ĥ
H
ax(n)

(11)

where f [·] is the p-th order inverse of the static nonlinearity g[·], the

vector ĥa is defined as ĥa = [ĥa(0), ĥa(1), · · · , ĥa(La − 1)] and

the input vector is given by x(n) = [x(n), x(n−1), · · ·x(n−La)]
T.

The intermediate variable û(n) is given by:

û(n) = ĥa[yeq(n), yeq(n− 1), · · · yeq(n− La)]
T

(12)

To avoid ambiguity in the filter gain [13], ĥa(0) is anchored to

a fixed value. The error to be minimized can be written as

e(n) = ŝ1(n)− ŝ2(n) = θ
H(n)ϕ(n)− ĥa(0)

∗
x(n) (13)

where vectors θ(n) ∈ C
(P+La+1)×1 and ϕ(n) ∈ C

(P+La+1)×1 are

given by

θ(n) = [fT(n), ĥT
a(n)]

T

ϕ(n) = [φ[û(n)]T, −x
T(n)]T

(14)

and

f(n) = [f1(n) f3(n) · · · f2P+1(n)]
T

ĥa(n) = [ĥa1(n) ĥa2(n) · · · , ĥaLa(n)]
T

φ[û(n)] = [φ1[û(n)] φ3[û(n)] · · · , φ2P+1[û(n)]]
T

(15)

Using the instantaneous squared error |e(n)|2 as an objective

function, a stochastic gradient algorithm that updates θ(n) is given

by

θ(n+ 1) = θ(n)− µe
∗(n)∇θ[e(n)] (16)

where µ is a step size controlling the convergence speed and algo-

rithm stability. The gradient in (16) is given by

∇θ[e(n)] =

[

∇f [s1(n)]
∇â[s1(n)]−∇â[s2(n)]

]

(17)

where

∇f [s1(n)] = φ[û(n)]

∇â[s2(n)] = x(n)

∇â[s1(n)] =

(

f1(n) +

P−1
∑

k=0

(2k + 3)f2k+3(n)φ2k+1[û(n)]

)

× yeq(n)

(18)

and yeq(n) = [yeq(n), yeq(n − 1), . . . , yeq(n − La)]
T. Verifica-

tion of ∇â[s1(n)] in (18) is straightforward, and is presented in the

following:

Using (14) and (15), it is possible to obtain

∇â[s1(n)] =
∂s1(n)

∂û(n)

∂û(n)

∂â(n)
=
∂s1(n)

∂û(n)
yeq(n) (19)

To proceed we need to employ the basic passband representation of

the conventional polynomial model, i.e.,

s̃1(n) =

P
∑

k=0

f̃kũ
k(n) (20)

where (̃·) is the notation for passband signal and coefficients and P

is the order of the polynomial model. To obtain
∂s1(n)
∂u(n)

, avoiding the

problem of baseband model differentiation, we can first differentiate

(20) with respect to ũ(n) and then transform the result to baseband.

The differentiation in passband is straightforward and is given by

∂s̃1(n)

∂ũ(n)
=

P
∑

k=1

k f̃kũ
k−1(n) (21)

where f̃ ′

k = k f̃k. The baseband form of (21) is given by [14] (con-

sidering u(n) as a narrowband signal)

∂s1(n)

∂u(n)
= f1 +

P−1
∑

k=0

f
′

2k+3[u
k+1(n)(u∗(n))k]

= f1 +

P−1
∑

k=0

(2k + 3) f2k+3|u(n)|
2k
u(n) (22)

Except for the constant f1 and the order of the polynomial, the

derivative has the same form as the memoryless polynomial model.
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Table 1. Adjacent channel power leakage ratio (ACLR) for different PA
back-off levels; the values are calculated for an operation band of 10 MHz
when the first adjacent band is at 7–12 MHz.

PA IBO ACLR with LC ACLR with NLC ACLR with PD+LC

−2 dB −30.4 dB −34.0 dB −41.0 dB

−4 dB −33.5 dB −38.4 dB −45.9 dB

−6 dB −37.3 dB −42.9 dB −46.5 dB

3.3. Implementation of Predistorter and SI Canceller

⋄ PD and linear canceller: From the identification algorithm de-

veloped in the previous section we obtain: a) the PD coefficients, b)

the linear cascade estimate of Ha(z), Hb(z), and HSI(z), and c)

the estimate of Ha(z). A Wiener PD is implemented by using the

nonlinear PD coefficients and the estimate of H−1
a (z). A linear can-

celler is implemented using the estimate ĤSIeq that is formed by the

SI channel and the linear filter placed after the nonlinear block, i.e.,

HSI(z)Hb(z). A block diagram of full duplex relay including PD

and DSP canceller is illustrated in Fig. 1.

⋄ Nonlinear canceller: The NLC takes into account the nonlinear

distortion produced by the nonlinear PA. The estimate of the SI sig-

nal can be expressed as

ŝiNLC(n) = ĝ[r(n) ∗ ĥa(n)] ∗ ĥSIeq (n)GLNA (23)

where r(n) is the digital baseband signal obtained before the PA,

GLNA is the low-noise amplifier gain, and ĝ[·], ĥSIeq (n), and ĥa(n)
are the estimates of the PA response, the equivalent SI channel and

the linear filter ha(n) respectively.

⋄ Linear canceller: The LC assumes a linear a PA. The estimate of

the SI signal is given by

ŝiLC(n) = r(n) ∗ ĥa(n) ∗ ĥSIeq (n)GLNA. (24)

4. SIMULATION RESULTS AND CONCLUSIONS

A full-duplex relay scenario is evaluated assuming OFDM transmis-

sion with N = 512 subcarriers and 10 MHz system bandwidth.

Transmit power is 0 dBm, and passive/antenna cancellation and RF

cancellation with 50 dB and 30 dB attenuation, respectively, are as-

sumed. The SNR at the relay node is 30 dB. The self-interference

channel is modeled as a FIR filter, where the main path and mul-

tipath components have a power difference, K-factor, of 30 dB. At

initialization, one OFDM symbol with T = 32 active subcarriers is

used to identify the linear cascade and 20 OFDM symbols are re-

quired to identify the NL block. The predistorter was implemented

using a polynomial with P = 7 (only odd terms) and the linear block

was identified using La = 5 coefficients. The results are averaged

over 100 SI channel and noise realization, and 8-time oversampling

is used to evaluate the spectral regrowth. The power amplifier is

modeled as a W-H system, where the linear filters are given by [15]

Ha(z) =
1 + 0.1z−2

1− 0.1z−1
and Hb(z) =

1− 0.1z−1

1− 0.2z−1
, (25)

and the static nonlinearity follows a solid state power amplifier

(SSPA) response employing the Saleh model with smoothing factor

p = 2 and clipping level CL = 1. The PA operation point is con-

trolled using a backoff, that is defined as IBO = 10 log10
Pisat
Pi

,

where Pisat is the input saturation power and Pi is the input power.
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Fig. 3. The effect of distortion at relay output with a linear DSP

canceler, nonlinear canceler and predistorter.

The signal-to-interference-and-noise ratio (SINR) at the output of

the node relay is employed to quantify the relay performance. Its

includes the channel noise, residual SI and PA distortion. Figure 3(a)

illustrates the SINR at the output obtained for the PA operating with

different IBO. The curves show the advantage of using the predis-

torter (PD) with linear canceller compared with nonlinear canceller

(NLC) and linear canceller (LC) techniques. The PD outperforms

NLC and LC techniques in terms of SINR for severe PA distortion.

The performance in terms of the out-of-band distortion is shown in

Fig. 3(b). The figure depicts the power spectral density (PSD) at the

relay output verifying the advantage of the PD technique. Table 1

illustrates adjacent channel leakage in the same cases.

In summary, the obtained results show that the proposed scheme

is able to increase significantly the signal-to-interference-plus-noise

ratio at the transceiver output and to reduce out-of-band emissions

in comparison to linear and nonlinear cancellation without predis-

tortion. Moreover, the quality of the desired signal transmitted to a

distant receiver is also improved with predistortion, while mere non-

linear cancellation does not reduce the effects of PA nonlinearities in

the transmitted signal.
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