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ABSTRACT

We consider the problem of inferring a graph from signals which are
assumed to be smooth over the graph, in the setting where the graph
is also assumed to be sparse. We focus on the case where mea-
surements are Gaussian vectors and the graph topology is encoded
in the inverse of the covariance matrix. In addition, the weights
of the inverse covariance are assumed to be such that the model
is attractive—all partial correlations are non-negative. Unlike other
approaches which seek to minimize the Laplacian quadratic form
or involve solving a log-det program, we study a simple estimator
based on soft thresholding. The estimator involves computing only
a single eigenvalue decomposition, and so it can easily scale to net-
works with thousands of vertices. We provide theoretical results on
the reconstruction error as a function of the number of observations
and problem dimensions for the case where the underlying graph is
assumed to be sparse.

1. INTRODUCTION

The field of signal processing over graphs has emerged as a vibrant
and active area of research that promises to generalize classical sig-
nal processing theory and methods to data that is more naturally
modelled as being supported on a graph [1, 2]. A graph or network
is a combinatorial structure that encodes relationships between pairs
of nodes, and a graph signal is a function assigning a value to each
node in the graph.

A fundamental task for graph signal processing is that of in-
ferring the graph topology from direct or indirect signals. In some
applications (e.g., those involving infrastructure networks) the graph
may be evident directly from available side information. Even in
such cases, the information available may noisy (e.g., available maps
may be outdated). In other applications—especially those where
the graph captures conceptual relationships (e.g., correlations) rather
than physical ones—the graph may need to be inferred from data. In
some cases it may desirable to infer the graph so that other graph
signal processing methods can subsequently be applied, leveraging
knowledge of the graph topology. In other cases the end-goal itself
may be to infer the graph topology.

The role of sparsity in covariance matrix estimation was first ex-
plored by Dempster [3], who coined the term “covariance selection”
for the problem of inferring the positions of non-zero entries in the
precision matrix. The past decade has seen significant advances in
terms of algorithms for inferring sparse inverse covariance matrices
based on convex optimization [4–10]. In many cases these meth-
ods are supported by theoretical performance guarantees even in the
regime where the number of signals observed, n, is much less than
the number of vertices in the graph, p.

Topology inference has also featured prominently in the graph
signal processing literature. One line of work (discussed in further
detail in Sec. 3) has explored the possibility of inferring graph struc-
ture from signals that are assumed to be smooth over the graph [11–
13]. Another line of work is based on a model where measurements
are related to the graph topology via filtering (e.g., modeling the dif-
fusion of an idea or spreading of a disease) [14–17].

This paper considers the problem of inferring a graph encoded in
the precision matrix of a Gaussian Markov random field. We focus
on the particular case where the precision matrix is directly related to
the Laplacian of the unknown graph. We study a simple, closed-form
estimator for the precision matrix, and hence the graph Laplacian.
Our work is inspired by the elementary estimators proposed in [18].
In the case when the graph is sparse, we prove that the estimator is
consistent and provide error bounds.

2. PROBLEM FORMULATION

Let G = (V,E) be an undirected (possibly weighted) graph with
|V | = p vertices, V = {v1, . . . , vp}, and let W ∈ Rp×p+ denote its
adjacency matrix, with Wi,j > 0 if and only if (vi, vj) ∈ E. The
graph Laplacian is the matrix L = D −W , where D is a diagonal
matrix with Di,i =

∑p
j=1Wi,j . For a graph signal x ∈ Rp, the

quadratic form

xTLx =

p∑
i,j=1

Wi,j(xi − xj)2

measures smoothness with respect to the graph topology [1]. The
graph Laplacian L is positive semi-definite [19], so xTLx ≥ 0 for
all x, and xTLx is smaller when nodes at neighboring vertices have
similar values. In particular, if x = 1 then xTLx = 0.

Let X denote a p-dimensional Gaussian random vector with
mean 0 and covariance matrix Σ; i.e., X ∼ N (0,Σ). This distri-
bution is said to be a Gaussian-Markov random field (GMRF) with
respect to a graph G = (V,E) if the precision matrix, Θ = (Σ)−1,
satisfies Θ?

i,j 6= 0 if and only if (vi, vj) ∈ E. In general, the non-
zero off-diagonal elements of Θ may be positive or negative. When
the off-diagonal elements of Θ are strictly non-positive, the corre-
sponding GMRF is called attractive [9, 20], and the partial correla-
tions, which are given by

Corr(Xi, Xj |X\{i,j}) =
−Θi,j√
Θi,iΘj,j

,

are strictly positive.
As a special case, suppose that Θ = L. ThenX has pdf p(x) ∝

exp(−xTLx); i.e., a signal x is more likely under this model if it
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is smooth with respect to the graph, in the sense of having a small
Laplacian quadratic form.

Since L is not full rank, taking Θ = L yields an improper
GMRF [21]. However, a related proper GMRF can be obtained in the
following manner [12,21,22]. WhenG is undirected, L is symmetric
and hence it has a real eigendecomposition L = UΛUT, where U
is an orthogonal matrix of eigenvectors and Λ is the diagonal matrix
of eigenvalues. Suppose that

X = UY +W,

where Y ∼ N (0,Λ+), W ∼ N (0, σ2I), and with Λ+ denot-
ing the pseudo-inverse of Λ. Then UY ∼ N (0,L+), and X ∼
N (0,L+ + σ2I) is a proper GMRF with respect to the graph G =
(V,E).

Now let x(1), . . . ,x(n) ∈ Rp denote n i.i.d. realizations of the
model just described, and let us organize these into the data matrix
X ∈ Rn×p with one row per realization.

Problem 1. Given X , we would like to estimate L and hence the
structure of the graph G = (V,E) underlying the attractive GMRF.

Of particular interest in contemporary applications is the case
where p is large (many vertices in the graph) and the number of
observations n is less than p.

3. MAXIMUM LIKELIHOOD AND ALTERNATIVES

For a general GMRF, given x(1), . . . ,x(n) i.i.d.∼ N (0,Θ−1), the
maximum likelihood estimate of Θ is given by the solution to the
problem,

minimize − log det(Θ) + tr(ΘS)
subject to Θ ∈ Sp++

where Sp++ is the set of p × p symmetric positive definite matrices,
and S = 1

n
XTX is the sample covariance matrix. This is a convex

(semi-definite) program that is challenging to solve in practice for
large problem instances (large p) because of the log det term.

Note that tr(ΘS) = 1
n

tr(XΘXT) = 1
n

∑n
k=1(x(k))TΘx(k).

So the maximum likelihood formulation can indeed be viewed as
finding a Θ such that the signals x(k) are smooth with respect to Θ.

Let Lp denote the set of valid p× p graph Laplacian matrices,

Lp = {L ∈ Rp×p : Li,j = Lj,i ≤ 0, i 6= j, and Li,i = −
∑
j 6=i

Li,j}.

Under the attractive GMRF model described in the previous section,
the maximum likelihood estimate for L can be obtained by solving
the problem,

minimize − log det(Θ) + tr(ΘS)
subject to Θ−1 = L+ + σ2I

L ∈ Lp, σ2 > 0

where the minimization is performed jointly over L and σ2. Again,
this is a challenging problem in practice when p is large because of
the log det term.

Assuming that σ2 is known, Dong et al. [12] propose an alter-
native formulation,

minimize ‖X − Y ‖2F + tr(Y LY T) + α ‖L‖2F
subject to L ∈ Lp (1)

where the minimization is over L and Y ∈ Rn×p. This problem can
be viewed as seeking to find Y and L such that Y is simultaneously
close to the observations X and smooth with respect to the graph
Laplacian L. The third term acts as a regularizer on L to control its
sparsity, with α being a regularization parameter.

Kalofolias [13] proposes to optimize directly for the weights W
rather than for a Laplacian matrix, leading to the problem

minimize ‖W �Z‖1,1 + α1T log(W1) + β ‖W ‖2F
subject to W = W T ≥ 0, diag(W ) = 0

(2)

where Z is a p×pmatrix of pairwise distances, Zi,j = ‖xi − xj‖22,
where xi denotes the ith column of the data matrix X . Here the
first term corresponds to tr(XLXT) in the Laplacian formulation,
favouring graphs with respect to which the observed signals are
smooth, the logarithmic term controls the degrees of each vertex to
ensure the resulting graph estimate is not empty (no edges), and the
final Frobenius-norm term controls the sparsity of the solution. Sim-
ilar to above, α and β are regularization parameters. Kalofolias [13]
also proposes a computationally efficient method for solving both
(1) and (2) that exhibits very promising performance in experiments.

To date, although these alternative approaches are computation-
ally efficient and scalable, there are no statistical guarantees in the
literature for inferring the precision matrix of an attractive GMRF,
in particular in the regime where n < p.

4. A CLOSED-FORM ESTIMATOR

Inspired by the work of Yang et al. [18], in this section we describe
an alternative approach to estimating the precision matrix of an at-
tractive GMRF following the model described in Sec. 2.

Suppose we had a symmetric matrix B(X) that was close to L.
Then we could obtain an estimate L̂ by solving the problem

minimize ‖L‖1,off
subject to ‖L−B(X)‖∞,off ≤ γ

Li,j ≤ 0, for all i 6= j
Li,i = −

∑p
j 6=i Li,j , for i = 1, . . . , p

(3)

where ‖·‖1,off and ‖·‖∞,off refer to the element-wise `1 and `∞
norms of the off-diagonal elements of their arguments. The objec-
tive can be seen as promoting sparsity of the off-diagonal entries of
L. The first constraint requires that each off-diagonal element of L
be no more than γ away from its counterpart in B(X). The second
constraint ensures that the off-diagonal entries are non-positive as
required for attractive GMRFs. The final constraint ensures that
each diagonal entry of L is equal to the sum of the magnitudes of
the off-diagonal entries in the same row, as required to be a valid
graph Laplacian.

By observing that the problem (3) decomposes into indepen-
dent convex subproblems for each off-diagonal element, we find that
the solution is given in closed form via soft thresholding of the off-
diagonal elements. In particular, let

Tγ(x) = sign(x) max(|x| − γ, 0)

denote the soft-thresholding function, and let B̃ = Tγ(B(X)), with
Tγ applied element-wise. Then, for i 6= j,

L̂i,j =

{
B̃i,j if B̃i,j ≤ 0

0 otherwise,
(4)
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and L̂i,i = −
∑
j 6=i L̂i,j . Also note that the problem (3) is only

feasible if γ is sufficiently large to allow for nulling any positive
off-diagonal entries of B(X); i.e., if γ ≥ maxi 6=j [B(X)]i,j .

The discussion above is predicated on first finding a suitable
statistic B(X) that is close to the precision matrix L. A natural
choice would be to take B(X) = (S − σ2I)+, substituting the
sample covariance matrix for Σ and supposing that σ2 is known; al-
ternatively, σ2 could be estimated by examining the smallest eigen-
value of S. However, when n < p then S is rank deficient. The
approach suggested in [8, 18] is to first apply an appropriate thresh-
olding operation to S in order to obtain a matrix that is invertible,
which turns out to be possible under certain conditions related to the
sparsity of L (see Sec. 5).

Let us summarize the procedure for estimating L given X . The
procedure involves two thresholds ν > 0 and γ > 0 whose values
are to be determined below (see Sec. 5). Then perform the following
three steps:

1. Compute B = (Tν(S)− σ2I)+,

2. Set B̃ = Tγ(B),

3. Set the entries Li,j according to (4), and finally

4. Set the diagonal entries Li,i = −
∑
j 6=i Li,j .

The main computational effort is the (single) matrix pseudo-inverse
calculation performed in the first step, and hence this approach com-
fortably scales to graphs with thousands of vertices (see Sec. 6).

5. THEORETICAL GUARANTEES

Next we present theoretical guarantees for the estimator described in
the previous section. The proof is omitted due to space constraints,
but will be made available in an extended version of this paper [23].
The analysis builds on the results of [18], and we comment on the
main differences below.

The theoretical guarantees are based on the following assump-
tions.

A 1. The Laplacian L has exactly k non-zero off-diagonal entries.

A 2. The Laplacian L has bounded `∞ norm: there exists a finite
positive constant κ such that

‖L‖∞ = min
x 6=0

‖Lx‖∞
‖x‖∞

≤ κ.

A 3. The true covariance matrix Σ satisfies the conditions that: (i)
there exists a positive constant D such that maxi Σi,i ≤ D, and
(ii) for some 0 ≤ q < 1 there is a positive constant Cq such that
maxi

∑p
j=1 |Σi,j |

q ≤ Cq .

Assumption A1 is fairly standard, and many graphs of interest in
applications are sparse. Assumption A2 is related to the maximum
(weighted) degree in the graph; in particular κ is exactly twice the
maximum weighted degree. Assumption A3 may appear to be the
most restrictive at first glance, requiring that the covariance matrix
Σ = L+ + σ2I be roughly sparse (if q = 0 then the condition
implies that each row of Σ isCq-sparse). However, it is typically the
case that the covariance matrix will be approximately sparse. For an
example, see Fig. 1.

With these assumptions in place we can state the main result.

Proposition 1. Let Assumptions A1–A3 hold, let a =
16
√

10(maxi Σi,i) and let p′ = max(p, n). Given i.i.d. observa-
tions x(k) ∼ N (0,Σ) with Σ = L+ + σ2I , let L̂ be the output of
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Fig. 1. An example covariance matrix computed as Σ = L+ + σ2I
where the graph used to generate L is a ring on p = 1000 vertices
and σ2 = 1e− 4.

the estimator described in Section 4 with parameters ν = a
√

log p′

n

and γ = 4aκ
σ2

√
log p′

n
. If n > C1 log p′, then the bounds

∥∥∥L− L̂
∥∥∥
∞,off

≤ 8aκ

σ2

√
log p′

n

and ∥∥∥L− L̂
∥∥∥
1,off
≤ 32aκ

σ2
k

√
log p′

n
,

both hold with probability at least 1− C2 exp(−C3 log p′).

The constants C1, C2, and C3 depend on D and Cq from A3.
The proof follows similar steps to those of Corollary 1 in [18], with
a few key differences. The main difference is that [18] considers the
case where the precision matrix Θ is sparse. However, for the model
considered in this paper, this is no longer the case when σ2 > 0. This
requires adapting the formulation to optimize for L rather than Θ.
Hence the algorithm and analysis need to be adapted accordingly.
The crux of the analysis involves showing that B computed in the
first step is sufficiently close to L for the method to succeed.

6. EXPERIMENTS

We illustrate the method by applying it to synthetic data. We sim-
ulate two families of graphs, small-world random graphs following
the Watts-Strogatz model [24], and random geometric graphs. For
the latter, the vertices are assigned coordinates uniformly and inde-
pendently in the unit square, and two vertices are connected with an
edge if their Euclidean distance is at most

√
log(p)/p. In both cases

we use σ2 = 0.0001 and we repeat each experiment 50 times. For
the small-world graphs we use p = 1000 vertices and n = 500 ob-
servations, and for the random geometric graphs we use p = 3000
vertices and n = 1500 observations. In the small-world experiment
each node initially has 10 neighbors and links are rewired with prob-
ability 0.1. For the parameters used in the random geometric graph
experiment, the network has roughly 36300 edges, on average.

6535



The parameters and results are summarized in Table 1. We re-
port the edge accuracy in terms of the average true positive rate
(TPR) and false positive rate (FPR), as well as the average runtime
on a contemporary laptop with 16GB of RAM and an 2.9GHz Intel
Core i5 processor. Although the performance is modest, it is no-
table that the approach indeed offers interesting results, especially
given the simplicity of the estimator. The runtime is dominated by
the pseudo-inverse calculation, which we implement via an eigen-
value decomposition. Even for a graph with 3000 vertices the proce-
dure terminates in well under two seconds. Additional improvement
in performance may be possible with additional fine-tuning of the
threshold parameters.

n p TPR FPR time (s)
Small world 500 1000 0.9256 0.0636 0.0756

Rand. geo. 1500 3000 0.9557 0.2142 1.1873

Table 1. Experiment parameters and results.

7. DISCUSSION

This paper studied a simple threshold-based estimator for inferring
the topology of a sparse graph from signals that are assumed to be
smooth over the graph. The inference procedure is computation-
ally simple, involving three steps. The computational complexity is
dominated by one matrix inverse. The other operations amount to
soft thresholding the sample covariance matrix and an approximate
Laplacian. Theoretical guarantees are provided, and experiments il-
lustrate the performance on networks with up to thousands of ver-
tices.

The approach considered in this paper is fundamentally based
on the assumption that the network is sparse, rather than that the sig-
nals are smooth with respect to the graph. Indeed, the majority of the
theoretical guarantees available in the literature for covariance selec-
tion of large graphical models (including general Gaussian graphical
models) are based on sparsity assumptions. Continuing to expand
this literature on topology inference methods which are scalable and
which also have performance guarantees is of significant interest.

More recently in the graph signal processing literature there has
been equal or more emphasis on finding graphs for which the ob-
served signals are smooth, with sparsity of the topology being sec-
ondary. One may ask if smoothness (e.g., as measured by the Lapla-
cian quadratic form) is sufficient to provide topology recovery guar-
antees, without any requirement for sparsity. While it is interesting
to pursue this question further, we conjecture that the answer is nega-
tive. The Laplacian quadratic form xTLx =

∑p
j=1 λj(L)

∥∥uT
jx
∥∥2
2

can be interpreted as a weighted sum of the energy in each subspace
spanned by an eigenvector, scaled by the corresponding eigenvalue.
The existence of spectral sparsifiers [25]—a pair of graphs, G and
Ĝ, one of which is dense and the other sparse, both of which have
approximately the same eigenvalues—suggests that methods seek-
ing to find graphs only based on smoothness will, in general, have
multiple solutions. Regularizing for sparsity is an obvious way to
arrive at a unique solution.
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