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ABSTRACT

In this paper, we provide a novel regression algorithm based on a
Gaussian random field (GRF) indexed by a Riemannian manifold
(M, g). We utilize both the labeled and unlabeled data sets to ex-
ploit the geometric structure ofM. We use the recovered heat (H)
kernel as the covariance function for the GRF (HGRF). We propose
a Monte Carlo integral theorem on Riemannian manifolds and derive
the corresponding convergence rate and approximation error. Based
on this theorem, we correctly normalize the recovered eigenvector
to make it compatible with Riemannian measure. More importantly,
we prove that the HGRF is intrinsic to the original data manifold by
comparing the pullback geometry and the original geoemtry ofM.
Essentially it is a semi-supervised learning method, which means the
unlabeled data can be utilized to help identify the geometry structure
of the unknown manifoldM.

Index Terms— regression, manifold learning, semi-supervised
learning, Gaussian random field, heat kernel

1. INTRODUCTION

The problem of regression is an important topic in the fields of data
analysis and signal processing. The regression model is

yi = f(xi) + εi.i = 1, 2, 3, ..N, (1)

where f is an unknown regression function, yi are observations, xi
belong to M, and M is an index set. In our paper, we consider
the case whereM is a Riemannian manifold embedded in Rn, and
εi is the independent noise during observation. Our goal is to pre-
dict f accurately based on the finite labeled data set {xi, yi}Ni=1.
Classical methods of regression include linear regression, polyno-
mial regression [1], and wavelet regression [2]. Currently, one of
the most popular regression methods is Gaussian process (GP) re-
gression [3] (sometimes called Gaussian random field regression). It
assumes that there exists a nonparametric Bayesian prior on f . Pre-
dicting f(x) can be regarded as computing the conditional expecta-
tion, given observations {xi, yi}Ni=1. So Gaussian process regression
is highly related to Kriging in [4]. However, all of the methods men-
tioned above do not consider the geometry structure of the index set.
In fact, as pointed out in [5], the geometry of the data indeed gives a
nonparametric prior for statistical inference. Unfortunately, in most
practical cases, the geometry ofM is unknown in advance.

Learning the geometry introduces another topic, called manifold
learning. In early works, manifold learning aimed at mapping high
dimensional data into low dimensional space while preserving the
topological or geometric properties of the data. Popular methods
include MDS, ISOMAP [6], LLE [7] and SNE [8]. Belkin [9] and
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Coifman [10] studied the topic from a spectral geometry perspective,
making manifold learning a powerful tool for exploring the intrinsic
geometry of data. Berry [11] further extended this framework by
recovering the geometry coupled with any Riemannian geometry.

Taking advantage of manifold learning, we construct a geometry-
adapted Gaussian random field model for regression. The GRF is
coupled with the heat kernel of the manifold as its covariance func-
tion. Intuitively, the heat kernel is a natural choice since it is positive
definite and encodes all the geometry information of the correspond-
ing manifold [12]. In this paper, we prove that the pullback metric
induced by GRF is asymptotic to the original metric up to a scalar
constant and the heat kernel can guarantee the local smoothness of
the regression function from statistical random field view. Further
the unlabeled data, which is usually extremely numerous in prac-
tice, can also be utilized for identifying the geometry. Generally
speaking, more data, whether it is labeled or not, can provide a
more reliable geometric prior for regression. From this perspective,
our method can be incorporated in a transductive/semi-supervised
framework [13]. So our algorithm provides the possibility that we
can obtain very accurate prediction even though we do not have
much known information. The advantage is in accordance with
the big data trend: people produce a tremendous amount of data
everyday, however, only a few of them will be labeled. Our simula-
tion results show the significant advantage of the geometry-adapted
algorithm, compared with the standard GP method. The results
also demonstrate our claim that unlabeled data can help reduce the
prediction error. In most cases, the data own its intrinsic geometry
structure, such as image [14–16], text data [17], data sampled from
stochastic dynamic systems [18–20], audio and video data [21, 22].
So our algorithm will have potential applications in many fields.

2. HEAT KERNEL

In this section, we briefly introduce the heat kernel, and show how
to recover it by diffusion maps [10] and correct normalization.

2.1. Learning the Geometry

It’s well known that the heat flow along a hypersurface M (or a
Riemannian Manifold) is governed by the heat diffusion equation:

∂

∂t
u = ∆u (2)

u(x, 0) = u0(x), (3)

where ∆ is the Laplacian-Beltrami operator [23], and u is the
temperature distribution on M. The solution of this partial equa-
tion is characterized by the heat kernel p(t, x, y): u(x, t) =∫
M p(t, x, y)u0(y) dvol(y), where the vol(y) is the Riemannian

volume measure.
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In addition, for compact (M, g), Sturm-Liouville theorem says that,
the heat kernel can be decomposed as [12]

p(t, x, y) =

∞∑
n=0

exp(−λnt)ϕn(x)ϕn(y), (4)

where {ϕn}∞n=0, which consist of a complete orthonormal basis for
L2(M, vol), are eigenfunctions of ∆, and {λn}∞n=0 are the corre-
sponding eigenvalues.

Alternatively, the heat kernel is indeed the transition probability
of a Brownian motion onM. Since a random walk is the discretized
version of the diffusion process, it is possible to learn the geometry
ofM by properly formulating the random walk on the data {xi}Ni=1

sampled fromM. Coifman [10] constructs such a random walk on
the data set, and gives a numerical method to approximate ∆:

Jε(xi, xj) = exp(−‖xi − xj‖2/2ε) (5a)

dε(xi) =

N∑
j=1

Jε(xi, xj) (5b)

Jε,1(xi, xj) = Jε(xi, xj)/dε(xj) (5c)

dε,1 =

N∑
j=1

Jε,1(xi, xj) (5d)

Ĵε,1(xi, xj) = Jε,1(xi, xj)/dε,1 (5e)

Lε,1 = (I − Ĵε,1)/ε. (5f)

[10] shows that as N → ∞, ε → 0, we have Lε,1 → ∆. So the
eigenvalues λ̂n and eigenvectors ϕ̂n of Lε,1 approximate the eigen-
values and eigenfunctions of ∆ respectively.

2.2. Monte Carlo Integral on Manifold

Because of the approximation of eigenvalues and eigenfunctions, we
can numerically recover p(t, x, y) of an unknown manifold using the
Sturm-Liouville theorem. If we simply normalize ϕ̂n by the l2 norm,
the sampling density q will introduce approximation error. That is,
the approximated eigenfunctions will be orthonormal in L2(M, µ),
where µ is the sampling measure q(x)vol(x), i.e.,

1

N
=

1

N

N∑
i=1

ϕ̂2
n(xi)→

∫
M
ϕ̂2
n(x)q(x) dvol(x). (6)

However, as mentioned above, the eigenfunctions should be or-
thonormal w.r.t. the Riemannian measure:∫

M
ϕ̂2
n(x) dvol(x) = 1. (7)

To tackle this problem, we derive the Monte Carlo integral theorem
on the Riemannian manifold.

Theorem 1. LetM be a compact d-dimensional manifold embed-
ded in Rn without boundary, f ∈ C3(M) ∩ L1(M, vol). {xi}Ni=1

are i.i.d. random variables sampled from M. We assume that
the sampling density q(x) on M is bounded away from zero and
bounded above, i.e., 0 < m = infx∈M q(x) ≤ supx∈M q(x) =

M < ∞, that q ∈ C3(M) ∩ L1(M, vol). We also assume the
derivatives of q up to the 2nd order are absolute integrable. Then,
for small enough ε,

lim
N→∞

N∑
i=1

(2πε)d/2f(xi)∑N
j=1 exp(− ‖xi−xj‖

2

2ε
)

=

∫
M
f(x) dvol(x) + o(ε)

(8)

with probability one. (See proof in [24])

Remark 1. The assumption on sampling density q(x) is not quite
restrictive, since we can consider q in a Sobolev space.

Corollary 1. Assume f, q satisfy the conditions mentioned above.
Then, with high probability,

N∑
i=1

(2πε)d/2f(xi)∑N
j=1 exp(− ‖xi−xj‖

2

2ε
)

=

∫
M
f(x) dvol(x) + o(ε,

2
√
G(f, q)√
N

,
2
√
M

π−d/4
√
Nεd/4+1

),

(9)

where G(f, q) is the functional of f, q, defined as

G(f, q) =

∫
M

f(x)2

q(x)
dvol(x)− (

∫
M
f(x) dvol(x))2. (10)

Remark 2. Here we follow Amit Singer’s notation in [25], so

o(ε,
2
√
G(f,q)
√
N

, 2
√
M

π−d/4
√
Nεd/4+1 ) means that there exist positive con-

stants (independent ofN and ε)C1, C2, C3, such that |o(ε, 2
√
G(f,q)
√
N

,

2
√
M

π−d/4
√
Nεd/4+1 )| ≤ C1ε+ C2

2
√
G(f,q)
√
N

+ C3
2
√
M

π−d/4
√
Nεd/4+1 .

Remark 3. Because of the fact that
∫
M q(x) dvol(x) = 1, using the

Cauchy-Schwarz inequality, we can easily prove G(f, q) ≥ 0.

Proposition 1. We normalize the eigenvectors ϕ̂n by ϕ̃n = ϕ̂n
Cn

,
where

Cn =

√√√√ N∑
i=1

(2πε)d/2ϕ̂2
n(xi)∑N

j=1 exp(− ‖xi−xj‖
2

2ε
)
, (11)

then ϕ̃n satisfies
∫
M ϕ̃2

n(x) dvol(x)→ 1.

Proof:

∫
M
ϕ̃2
n(x) dvol(x) ≈

N∑
i=1

(2πε)d/2ϕ̃2
n(x)∑N

j=1 exp(− ‖xi−xj‖
2

2ε
)

=
1

C2
n

N∑
i=1

(2πε)d/2ϕ̂2
n(x)∑N

j=1 exp(− ‖xi−xj‖
2

2ε
)

= 1

We can compute Cn immediately.
Given approximated eigenvalues λ̂n and correctly normalized

eigenvectors ϕ̃n, then we can reconstruct the heat kernel. As we can
see, the eigenvalues of the heat kernel exp(−λnt) decay at exponen-
tial rate, so it is sufficient to select the topM (M � N ) eigenvectors
to recover the truncated kernel,

p(t, x, y)trun =

M∑
n=0

exp(−λ̂nt)ϕ̃n(x)ϕ̃n(y). (12)

In numerical experiment, we do not need to estimate the dimension-
ality d of the manifoldM, since it is just a constant scalar.
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3. PULLBACK GEOMETRY

HGRF can be viewed as an “infinite manifold” embedded in
L2(Ω,F ,P), with the result that HGRF is naturally coupled with
structure. In this section, we derive the pullback metric [26] to show
that the heat kernel is intrinsic as a covariance function of GRF.
For readers who might not be familiar with random field theory,
before formulating our main theorem, we first give some necessary
definitions.

Definition 1. A Gaussian random field f indexed byM is a collec-
tion of Gaussian random variables:

{f(x) : x ∈M}, (13)

and the finite distributions of (fx1 , ..., fxn) are multivariate Gaus-
sian for each 1 ≤ n <∞ and each (x1, ..xn) ∈M.

Definition 2. Let (M, g) be a Riemannian manifold, and f be a
zero mean Gaussian random field indexed byM. The Riemannian
structure induced by f is the pull-back of the standard structure on
L2(Ω,F ,P), and is given by

gpull(Xp, Yp) = E(XpfYpf), (14)

where Xp, Yp ∈ TpM.

Theorem 2. Let (M, g) be a compact Riemannian manifold, and f
be a zero mean Gaussian random field indexed byM. If the covari-
ance function of f is the heat kernel (heat propagation function) on
M, then the pullback metric gpull at point p ∈ M induced by f is
asymptotic to g up to a scalar:

gpull(p) =
1

(4πt)n/2(2t)
(gp + t(

1

6
Spgp −

1

3
Riccip) + o(t2)),

(15)
where Sp is the scalar curvature and Riccip is the Ricci curvature
tensor. (See proof in [24])

Remark 4. If (M, g) is flat, such as a Euclidean space, then the
terms in (15) related to curvature will vanish and (15) degenerates
to the case in [27]. We also can modify the Riemannian metric on
manifold to make it compatible with the task, following the quasi-
conformal transformation strategy introduced in [27].

If the prorogation time t is small enough, we immediately see
that

gpull(p) ≈
1

(4πt)n/2(2t)
gp. (16)

The constant before gp does not depend on p, which implies the
heat kernel p(t, x, y) approximately preserves the relative distance.
Hence, the Riemannian manifold (M, g) and the Hilbert space
L2(Ω,F ,P) are “locally isometric” up to a constant (see [24]). The
pullback geodesic distance between any two points p, q ∈ M, is
defined as [23]

distpull(p, q) = inf
γ(t)

∫ 1

0

√
gpull( ˙γ(t), ˙γ(t)) dt. (17)

(14) and (17) imply that the induced geodesic curve τpull(t) (w.r.t.
gpull) is actually the one along which the expected variance of the
derivative of f is minimized. Thanks to (16), the geodesic curve
τ(t) (w.r.t. g) approaches τpull(t), and then the smoothness of f
along τ(t) can also be guaranteed.

The metric at any point will change w.r.t. the propagation time
t, which reflects the multi-resolution properties of the heat kernel.
As pointed out in [28], p(t, x, y) is a family of diffusion wavelets, so
our method can be easily generalized into the multi-scale regression
framework.

4. HGRF FOR REGRESSION

GRF regression is a state-of-art nonparametric method [3]. GRF is
actually a prior over functions: f ∼ GRF(m, k), where m is the
mean function (we set it to be zero) and k is the covariance function.

We assume the εi in regression model (1) are i.i.d. Gaussian
noise, so [

yl

yu

]∣∣∣∣xl,xu ∼ N (0,R), (18)

R =

[
k(xl,xl) + σ2I k(xl,xu)
k(xu,xl) k(xu,xu)

]
,

where xl, xu are labeled and unlabeled data sets respectively, yl, yu

are function values on labeled and unlabeled data sets respectively,
and σ2 is the variance of noise εi. The conditional distribution of yu

is,
yu|yl,xl,xu ∼ N (µu,Σu) (19)

where

µu = k(xu,xl)(k(xl,xl) + σ2I)−1yl (20)

Σu = k(xu,xu)− k(xu,xl)(k(xl,xl) + σ2I)−1k(xl,xu).
(21)

Then, µu is the prediction vector for yu. In our algorithm, k is
the heat kernel p(t, x, y) recovered from datasets, which implies our
algorithm is also a kind of kernel learning method [29]. The de-
tailed procedure is summarized in Algorithm 1.(Step 2 is the diffu-
sion maps [10] algorithm.)

Algorithm 1 HGRF for regression

Inputs: Data sets: labeled data {xl
i,y

l
i}
nl
i=1, and unlabeled data

{xu
i }nu
i=1. Parameters: number of selected eigenfunctions num eig,

propagation time t, and noise variance σ2.
Output: The prediction vector {yp

i }
nu
i=1 for unlabeled

data
1. Set X = [xl,xu]

ε = 1
nl+nu

∑nl+nu
i=1 minj ‖xi − xj‖

2. (a) Form the affinity matrix Jij = {exp(− ‖xi−xj‖
2

2ε
)}

(b) Set Di =
∑N
j=1 Ji,j , Kij = Jij/DiDj

(c) Set Qi = (
∑N
j=1Kij)

1
2 , K̂ij = Kij/QiQj

(d) Decompose [U, S, V ] = SVD(K̂)

(e) Estimate the eigenvectors ϕ̂n = U(:, n)./U(:, 1)

3. For each n, ϕ̃n = ϕ̂n/Cn, define Cn as in (11)

4. Reconstruct the heat kernel as
pij =

∑num eig
n=1 exp(− (1−Sn)t

ε
)ϕ̃n(i)ϕ̃n(j)

5. The prediction vector yp is
yp = p(xu,xl)(p(xl,xl) + σ2I)−1yl

5. NUMERICAL RESULTS

In this section, we will apply our algorithm on both noiseless and
noisy data sets. In the first experiment, we compare our algorithm
HGRF regression with standard GP regression (here we use GPML
toolbox [30]); in the second experiment, we numerically demon-
strate our claim that unlabeled data can still help reduce the uncer-
tainty by identifying the data manifold geometry.
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(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) The regression function defined on γ; (b) Labeled dataset
sampled from γ; (c) Gaussian kernel centered at point A; (d) Heat
kernel centered at point A; (e) Regression results with GPML tool-
box; (f) Regression results with HGRF

5.1. Noiseless Data

Suppose the data are sampled from a closed curve γ:

x1 = (0.5 + 0.46 cos(2θ)) cos θ (22)
x2 = (0.5 + 0.46 cos(2θ)) sin θ. (23)
θ ∈ (0, 2π)

And the regression function on the curve is: f = sin θ + 1. We ran-
domly sample 32 points from γ as labeled (or training) dataset, and
randomly sample 5000 points from γ as unlabeled dataset. We aim at
estimating f on these 5000 points. We set propagation time t = 0.3,
set regularizer σ2 = 0.001 and select the largest 50 eigenvalues and
the corresponding eigenvectors to recover the heat kernel.

The regression results are shown in Fig. 1, in which the func-
tion value at each point is represented by its color. As we can see
in Fig. 1(e) and (f), our algorithm can perfectly recover f . However,
the standard GP method with Gaussian kernel as its covariance func-
tion fails. We visualize the Gaussian kernel and heat kernel centered
at point A in Fig. 1(c) and (d) respectively. For Gaussian kernel, the
“information” propagates isotropically into the whole space; how-
ever, for the heat kernel, the “information” is constrained along the
curves. In fact, this reflects the entropy of GRF [31]. The entropy of
the GRF indexed by R2 is far more than that of the HGRF indexed
by γ.

5.2. Noisy Data

We suppose that the datasets are sampled from a helix embedded in
R3, and the we add Gaussian noise on f :

x1 = (0.2− 0.05 cos(
π

30
t)) sin(

π

5
t) (24)

x2 = (0.2− 0.05 cos(
π

30
t)) cos(

π

5
t) (25)

x3 = sin(
π

30
t) (26)

t ∈ (0, 60)

(a) (b) (c)

(d) (e) (f)

Fig. 2. (a) The regression function defined on the helix; (b) Labeled
dataset sampled from the helix; (c) Recovered heat kernel with 1.5 ∗
103 unlabeled data ; (d) Regression results with 1.5 ∗ 103 unlabeled
data ; (e) Regression results with 500 unlabeled data; (f) Number of
samples–averaged square error curve

The observed function value is y = sin( π
15
t) + 1 + ε, where ε ∼

N (0, 0.022).
We randomly select 40 labeled points. We set propagation time

t = 0.3, set regularizer σ2 = 0.001 and select the largest 500 eigen-
values and the corresponding eigenvectors to recover the heat kernel.
We use the average squared error to measure the performance:

AVE =
1

nu

nu∑
i=1

(ypi − y
u
i )2, (27)

where nu is the number of unlabeled data sets, yp are the prediction
values, yu are the true values on unlabeled data.

This curve is highly twisted as shown in Fig. 2(a), so that it will
take many points to accurately “learn” the geometry. As we can see
in Fig. 2(d) and Fig. 2(e), our algorithm performs much better on
15000 points than on 500 points. It is clearly shown in Fig. 2(f) that
unlabeled data can greatly improve the prediction accuracy!

6. CONCLUSION

In this paper, we have developed a geometry-adapted algorithm for
regression on unknown Riemannian manifolds. We proposed Monte
Carlo integral theorem and derived the explicit relation between the
original metric and pullback metric. Our simulation results demon-
strated the advantage of the HGRF. The discussion of pullback ge-
ometry showed that this algorithm has a great potential for being
extended to task-based learning and multi-resolution regression.
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