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ABSTRACT

We address the problem of identifying a graph structure from the
observation of signals defined on its nodes. Fundamentally, the un-
known graph encodes direct relationships between signal elements,
which we aim to recover from observable indirect relationships gen-
erated by a diffusion process on the graph. We put forth a novel net-
work topology inference approach whereby we: i) identify the eigen-
vectors of a matrix representation of the graph from realizations of
the diffused signal; and ii) rely on these (possibly imperfect) spectral
templates to estimate the eigenvalues by imposing desirable proper-
ties on the graph to be recovered. Robust algorithms with quantifi-
able performance are developed for the pragmatic settings where the
eigenvectors are estimated with errors, or, when the eigenbasis is
only partially known. Numerical tests showcase the effectiveness of
the proposed algorithm in recovering amino-acid networks.

Index Terms— Network topology inference, graph signal pro-
cessing, network deconvolution.

1. INTRODUCTION
Consider a network whose abstraction is a weighted and undirected
graph G, consisting of a node setN of known cardinalityN , an edge
set E of unordered pairs of elements in N , and edge weights Aij ∈
R such that Aij = Aji 6= 0 for all (i, j) ∈ E . The edge weights Aij

are collected as entries of the symmetric adjacency matrix A and
the node degrees in the diagonal matrix D := diag(A1). These are
used to form the combinatorial Laplacian matrix Lc := D−A and
the normalized Laplacian L := I−D−1/2AD−1/2. More broadly,
one can define a generic graph-shift operator (GSO) S ∈ RN×N

as any matrix having the same sparsity pattern of G [1]. Although
the choice of S can be adapted to the problem at hand, most existing
works set it to either A, Lc, or L [2].

Our focus in this paper is on identifying graphs that explain the
structure of a random signal. Formally, let x = [x1, ..., xN ]T ∈ RN

be a graph signal in which the ith element xi denotes the signal value
at node i of an unknown graph G with shift operator S. Further sup-
pose that we are given a zero-mean white signal w with covariance
matrix Cw = E

[
wwT

]
= I. We say that the graph S represents

the structure of the signal x if there exists a diffusion process in the
GSO S that produces the signal x from the white signal w, that is

x = α0

∏∞
l=1(I− αlS)w =

∑∞
l=0 βlS

lw. (1)

This is equivalent to saying that the graph process x is stationary
in S; see [3] and Sec. 2 for further details. While S encodes only
one-hop interactions, each successive application of the shift in (1)
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percolates (correlates) w over G; see e.g. [4]. The product and sum
representations in (1) are common (and equivalent) models for the
generation of random signals. Indeed, any process that can be un-
derstood as the linear propagation of a white input through a static
graph can be written in the form in (1). The justification to say that
S represents the structure of x is that we can think of the edges of
S as direct (one-hop) relations between the elements of the signal.
The diffusion described by (1) generates indirect relations. Our goal
is to recover the fundamental relations described by S from a set
X :={xp}Pp=1 of P independent samples of the random signal x.

Relation to prior work. Network topology inference from a set of
nodal observations is a prominent problem in Network Science [5,
6]. Since networks encode similarities between nodes, several ap-
proaches infer the so-termed association networks by constructing
graphs whose edge weights correspond to correlations or coherence
measures indicating a nontrivial level of association between sig-
nal profiles at incident nodes [5, Ch. 7.3.1]. Association approaches
form links taking into account only pairwise interactions. To account
for the fact that the observed correlations can be due to latent net-
work effects, alternative methods rely on partial correlations [5, 7],
Gaussian graphical models [8–11], structural equation models [12,
13], Granger causality [6, 14], or their nonlinear (kernelized) vari-
ants [15, 16]. Differently, recent graph signal processing (GSP)-
based network inference frameworks postulate that the network ex-
ists as a latent underlying structure, and that observations are gen-
erated as a result of a network process defined in such graph. For
instance, network structure is estimated in [17] to unveil unknown re-
lations among nodal time series adhering to an autoregressive model
involving graph-filter dynamics. A factor analysis-based approach is
put forth in [18] to infer graph Laplacians, seeking that input graph
signals are smooth over the learned topologies; see also [19]. Differ-
ent from [17–19] that operate on the graph domain, the goal here is to
identify graphs that endow the given observations with desired spec-
tral (frequency-domain) characteristics. Two works have recently
explored this approach by identifying a GSO given its eigenvectors.
One is [20], which assumes perfect knowledge of the eigenvectors.
The other is [21], which only focuses on a Laplacian GSO.

Paper outline. In Sec. 2 we formulate the problem of identifying a
GSO that explains the fundamental structure of a random signal dif-
fused on a graph. Such a problem is shown to be underdetermined
and related to the concept of stationarity of graph signals [3, 22].
More precisely, it is established that the sought GSO must have the
same eigenvectors as the signal’s covariance matrix. This motivates
a novel two-step network topology inference approach whereby we:
i) leverage results from GSP theory to identify the GSO’s eigenbasis
from realizations of the diffused signal; and ii) rely on these spectral
templates to recover the GSO by estimating its eigenvalues. Differ-
ent from [20], we introduce an inference method for the pragmatic
case where knowledge of the spectral templates is imperfect (Sec.
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3.1), and establish that the proposed algorithm can identify the un-
derlying network topology robustly. Last but not least, in Sec. 3.2
we investigate the case where only a subset of the GSO’s eigen-
vectors are known. Such incomplete spectral templates arise e.g.,
when the observed graph signals are bandlimited. Numerical tests
in Sec. 4 showcase the effectiveness of the proposed algorithm in
identifying the structural properties of proteins from a mutual infor-
mation graph of the co-variation between the constitutional amino-
acids [23]. Concluding remarks are given in Sec. 5.

2. PROBLEM STATEMENT
This paper aims at identifying graphs that explain the structure of a
random signal, meaning that there exists a diffusion process in the
GSO that can generate the observed signal. Alternatively, we can
say that the goal is to recover the GSO that encodes direct relation-
ships between the elements of the signal from observable indirect
relationships generated by a diffusion process. We show next that
this is an underdetermined problem closely related to the notion of
stationary signals on graphs [3,22]. Begin by assuming that the shift
operator S is symmetric. Define then the eigenvector matrix V :=
[v1, . . . ,vN ] and the eigenvalue matrix Λ := diag(λ1, . . . , λN ) to
write S = VΛVT . Further note that while the diffusion expres-
sions in (1) are polynomials on the GSO of possibly infinite degree,
the Cayley-Hamilton theorem implies they are equivalent to polyno-
mials of degree smaller than N . Upon defining the vector of coeffi-
cients h := [h0, . . . , hL−1]T and the graph filter H :=

∑L−1
l=0 hlS

l,
the signal model in (1) can be rewritten as

x =
(∑L−1

l=0 hlS
l
)
w = Hw, (2)

for some particular h andL ≤ N . Since a graph filter H is a polyno-
mial on S [1], graph filters are linear graph-signal operators that have
the same eigenvectors as the shift (i.e., the operators H and S com-
mute). More important for the present paper, the filter representation
in (2) can be used to show that the eigenvectors of S are also eigen-
vectors of the covariance matrix Cx := E[xxT ]. To that end, use (2)
and the fact that Cw = I to write Cx = E[Hw

(
Hw

)T
] = HHT .

If we further use the spectral decomposition of the shift to express
the filter as H =

∑L−1
l=0 hl(VΛVT )l = V(

∑L−1
l=0 hlΛ

l)VT , we
can write the covariance matrix as

Cx = V
∣∣∑L−1

l=0 hlΛ
l
∣∣2 VT := Vdiag(p)VT , (3)

where the matrix squared-modulus operator | · |2 should be under-
stood entrywise, and we defined the power spectral density vector
p := diag(|

∑L−1
l=0 hlΛ

l|2) in the second equality.
The expression in (3) is precisely the requirement for a graph

signal to be stationary [3, Def. 3]; hence, the problem of identifying
a GSO that explains the fundamental structure of x is equivalent to
identifying a shift on which the signal x is stationary. A consequence
of this fact, which is apparent from (3), is that the eigenvectors of the
shift S and the covariance Cx are the same. Alternatively, one can
say that the difference between Cx, which includes indirect relation-
ships between components, and S, which contains exclusively direct
relationships, is only on their eigenvalues. While the diffusion in (1)
obscures the eigenvalues of S, the eigenvectors V remain present in
Cx as templates of the original spectrum.

Identity (3) also shows that the problem of finding a GSO that
generates x from a white input w with unknown coefficients [cf.
(1)] is underdetermined. As long as the matrices S and Cx have
the same eigenvectors, filter coefficients that generate x through a
diffusion process on S exist. In fact, the covariance matrix Cx itself
is a GSO that can generate x through a diffusion process and so is the
precision matrix C−1

x . To sort out this ambiguity, which amounts to

selecting the eigenvalues of S, we assume that the GSO of interest is
optimal in some sense. To be more precise, we can introduce criteria
in the form of generic (often convex) functions f(S,λ) and define
the shift operator that is optimal with respect to these criteria

S∗ := argmin
{S,λ}

f(S,λ), s. to S =
∑N

k=1λkvkvT
k , S ∈ S, (4)

where λ = [λ1, . . . , λN ]T , and S is a convex set that specifies the
type of GSO we want to identify. Also, we have written VΛVT =∑N

k=1 λkvkvT
k to emphasize that if the eigenvectors vk are known,

the constraints in (4) are linear on the unknown eigenvalues λk.
Criteria. Possible choices for the criteria in (4) are to: (i) Adopt
f(S,λ) = ‖S‖F, which finds a GSO minimizing the total energy
stored in the weights of the edges. (ii) Make f(S,λ)=‖S‖∞, which
yields GSOs for graphs with uniformly low edge weights. This can
be meaningful, e.g., when identifying graphs subject to capacity con-
straints. (iii) Minimize the `0 norm f(S,λ) = ‖S‖0 which is non-
convex, but of widespread interest in identifying sparse graphs (e.g.,
of direct relations among signal elements). For later use, let S∗0 be
the (sparsest) solution of (4) for the choice f(S,λ) = ‖S‖0.
Constraints. The constraint S ∈ S in (4) incorporates a priori
knowledge about S. If we let S = A represent the adjacency matrix
of an undirected graph with non-negative weights and no self-loops,
we can explicitly write S as follows

SA :={S |Sij ≥ 0, S∈MN, Sii = 0,
∑

j Sj1 =1}. (5)

The first condition in SA encodes the non-negativity of the weights
whereas the second condition incorporates the fact that the unknown
graph is undirected, hence, S must belong to the set MN of real
and symmetric N ×N matrices. The third condition encodes the
absence of self-loops, thus, each diagonal entry of S must be null.
Finally, the last condition fixes the scale of the admissible graphs
by setting the weighted degree of the first node to 1, and also rules
out the trivial solution S = 0. Naturally, the identification of other
GSOs can be of interest as well, including for instance L, Lc, and
the random walk Laplacian [24]. These can be accommodated in our
proposed framework via minor modifications to the set S; see [25].

Independently of the criteria, the definition in (4) provides a for-
mal description of a GSO that is considered to be the best possible
description of the structure of the signal x. Our goal is to find esti-
mators of these operators as per the following problem statement.

Problem 1 Given a set X := {xp}Pp=1 of P independent samples
of the random signal x, estimate the optimal description of the struc-
ture of x in the form of the graph-shift operator S∗ defined in (4).

Problem 1 is a simple convex optimization problem if the objec-
tive in (4) is convex, but necessitates relaxations for the minimum
zero-norm formulation. To solve Problem 1 we first use independent
samples of the random signal to estimate the covariance eigenvec-
tors. Then we estimate the eigenvalues using reformulations of (4)
robust to errors stemming from the eigenvector estimation step.

3. ROBUST RECOVERY FROM IMPERFECT TEMPLATES

Whenever the number of observed graph signals in X is limited or
the observations are corrupted by noise, assuming perfect knowledge
of the spectral templates V in (4) may be unrealistic. To overcome
this practical hurdle, this section deals with robust network inference
problems from imperfect (noisy or incomplete) spectral templates.
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3.1. Noisy spectral templates
We first address the case where knowledge of an approximate ver-
sion of the spectral templates V̂ = [v̂1, . . . , v̂N ] is available, e.g.,
from the eigenvectors of a sample covariance matrix Ĉx. The ques-
tion here is how to update the general formulation in (4) to account
for the discrepancies between the estimated spectral templates V̂
and the actual eigenvectors of S. A tractable alternative is to form
S′ :=

∑N
k=1 λkv̂kv̂T

k and search for a shift S that possesses the
desired properties while being close to S′. Formally, one can solve

Ŝ∗ := argmin
{S,λ,S′}

f(S,λ) (6)

s. to S′ =
∑N

k=1 λkv̂kv̂T
k , S ∈ S, d(S,S′) ≤ ε,

where d(·, ·) is a convex matrix distance. For instance, if ‖S− S′‖F
is chosen, the focus is on the similarities across the entries of the
shifts, while ‖S − S′‖2 focuses on their spectrum. The value of ε
must be chosen based on a priori information on the imperfections,
such as the number of signals used to form Ĉx, or the statistics of the
noise. Note that (6) is also relevant to setups where the templates V̂
are not necessarily noisy but the goal is to enlarge the set of feasible
GSOs. This can be of interest if, e.g., finding an S that is both sparse
and with the exact templates collected in V̂ is impossible.

The difficulty in solving (6) is determined by f and S. For the
particular case of sparse shifts, the `1 norm relaxation of (6) yields

Ŝ∗1 := argmin
{S,λ,S′}

‖S‖1 (7)

s. to S′ =
∑N

k=1 λkv̂kv̂T
k , S ∈ S, d(S,S′) ≤ ε,

where iteratively re-weighted schemes are also possible [25]. Note
that ‖S‖1 in (7) refers to the `1 norm of the vectorized version of S.
Moreover, further uncertainties can be introduced in the definition of
the feasible set S, e.g. in the scale of the admissible graphs for the
case of S = SA (cf. Proposition 1 and [25] for additional details).

To assess the effect of the noise in recovering the sparsest S,
some notation must be introduced. Define Ŵ := V̂ � V̂∈RN2×N ,
where � denotes the Khatri-Rao product. Let s∗0 := vec(S∗0), de-
note by D the diagonal indices such that (s∗0)D = diag(S∗0) and
partition its complementDc into K and Kc, with the former indicat-
ing the positions of the nonzero entries of s∗0Dc := (s∗0)Dc , where
matrix calligraphic subscripts select rows. Denoting by † the matrix
pseudo-inverse, we define M̂ := (I − ŴŴ†)Dc ∈ RN2−N×N2

,
i.e., the orthogonal projector onto the kernel of ŴT constrained to
the off-diagonal elements inDc. With e1 denoting the first canonical
basis vector, we construct

R̂ := [M̂, e1 ⊗ 1N−1] ∈ RN2−N×N2+1, (8)

by horizontally concatenating M̂ and a column vector of size |Dc|
with ones in the first N − 1 positions and zeros elsewhere. Fur-
ther, we drop the non-negativity constraint in SA – to obtain S̃A

– and incorporate the scale ambiguity by augmenting d(S,S′) as
d̃(S,S′) = (d(S,S′)2 +(

∑
j Sj1−1)2)1/2. With this notation, the

following result on robust recovery of network topologies holds1.

Proposition 1 When d(S,S′) = ‖S − S′‖F, and assuming that
there exists at least one S′ such that d̃(S∗0,S

′) ≤ ε, the solution
ŝ∗1 := vec(Ŝ∗1) to (7) for S = S̃A with scale ambiguity satisfies

‖ŝ∗1 − s∗0‖1 ≤ Cε, with C = 2C1 + 2C2C3, (9)

1Due to space constraints, the proofs can be found in an online appendix at
http://www.seas.upenn.edu/∼ssegarra/wiki/uploads/Research/RobTopID.pdf

if the two following conditions are satisfied:
1) rank(R̂K) = |K|; and
2) There exists a constant δ > 0 such that

ψ := ‖IKc(δ−2R̂R̂T + ITKcIKc)−1ITK‖∞ < 1. (10)

Constants C1, C2, and C3 are given by

C1 =

√
|K|

σmin(R̂T
K)
, C2 =

1 + ‖R̂T ‖2C1

1− ψ , C3 =‖R̂†‖2N, (11)

where σmin(·) denotes the minimum singular value.

When given noisy versions V̂ of the spectral templates of our
target GSO, Proposition 1 quantifies the effect that the noise has on
the recovery. More precisely, the recovered shift is guaranteed to
be at a maximum distance from the desired shift bounded by the
tolerance ε times a constant, which depends on R̂ and the supportK.
This also implies that as the number of observed signals increases
we recover the true GSO. In particular, as the number of observed
signals increases, the sample covariance Ĉx tends to the covariance
Cx and, for the cases where the latter has no repeated eigenvalues,
the noisy eigenvectors V̂ tend to the eigenvectors V of the desired
shift; see, e.g., [26, Th. 3.3.7]. In particular, with better estimates
V̂ the tolerance ε in (7) needed to guarantee feasibility can be made
smaller, entailing a smaller discrepancy between the recovered S∗1
and the sparsest shift S∗0. In the limit when V̂ = V and under no
additional uncertainties, the tolerance ε can be made zero and (9)
guarantees perfect recovery under conditions 1) and 2).

3.2. Incomplete spectral templates
Thus far we have assumed that (an estimate of) the entire set of
eigenvectors V = [v1, . . . ,vN ] is known. However, there are sce-
narios where only some of the eigenvectors (say K out of N ) are
available. This would be the case when e.g., V is found as the eigen-
basis of Cx and the given signal ensemble is bandlimited. More gen-
erally, if Cx contains repeated eigenvalues there is a rotation ambi-
guity in the definition of the associated eigenvectors. Hence, in this
case, we keep the eigenvectors that can be unambiguously character-
ized and, for the remaining ones, we include the rotation ambiguity
as an additional constraint in our optimization problem.

Formally, assume that theK first eigenvectors VK = [v1, ...,vK ]
are those which are known. Then, the network topology inference
problem with incomplete spectral templates can be formulated as

S̄∗1 := argmin
{S,SK̄ ,λ}

‖S‖1 (12)

s. to S = SK̄ +
∑K

k=1λkvkvT
k , S ∈ S, SK̄VK = 0,

where we already particularized the objective to the `1 convex re-
laxation. The formulation in (12) enforces S to be partially diag-
onalized by the known spectral templates VK , while its remaining
component SK̄ is forced to belong to the orthogonal complement
of range(VK). Notice that, as a consequence, the rank of SK̄ is at
most N − K. An advantage of using only partial information of
the eigenbasis as opposed to the whole V is that the set of feasible
solutions in (12) is larger than that in (4) when f(S,λ) = ‖S‖1.
This is particularly important when the templates do not come from
a prescribed GSO but, rather, one has the freedom to choose S pro-
vided it satisfies certain spectral properties (see [4] for examples in
the context of distributed estimation).

GSO recovery guarantees can be derived for (12). To formally
state these, define WK := VK �VK and Υ := [IN2 ,0N2×N2 ].
Also, define matrices B(i,j) ∈ RN×N for i < j such that B(i,j)

ij =
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Fig. 1: (a) Real and inferred contact networks between amino-acid residues for protein BPT1 BOVIN. Ground truth contact network (top
left), mutual information of the co-variation of amino-acid residues (top right), contact network inferred by network deconvolution (bottom
left), contact network inferred by our method based on spectral templates (bottom right). (b) Fraction of the real contact edges between
amino-acids recovered for each method as a function of the number of edges considered. (c) Counterpart of (b) for protein YES HUMAN.

1, B(i,j)
ji = −1, and all other entries are zero. Based on this, we

denote by B ∈ R(N2 )×N2

a matrix whose rows are the vectorized
forms of B(i,j) for all i, j ∈ {1, 2, . . . , N} where i < j. In this
way, Bs = 0 when s is the vectorized form of a symmetric matrix.
Further, we define the following matrices

P1 :=


I−WKW†

K

ID
B

0NK×N2

(e1 ⊗ 1N )T


T

, P2 :=


WKW†

K − I
0N×N2

0(N2 )×N2

I⊗ V T
K

01×N2


T

, (13)

and P := [PT
1 ,P

T
2 ]T . With this notation and denoting by J the

indices of the support of s∗0 = vec(S∗0), the following result holds.

Theorem 1 Whenever S = SA and assuming problem (12) is feasi-
ble, S̄∗1 = S∗0 if the two following conditions are satisfied:
1) rank([P1

T
J ,P

T
2 ]) = |J |+N2; and

2) There exists a constant δ > 0 such that

η := ‖ΥJ c(δ−2PPT + ΥT
J cΥJ c)−1ΥT

J ‖∞ < 1. (14)

The theorem provides sufficient conditions for the relaxed prob-
lem in (12) to recover the sparsest graph, even when not all the eigen-
vectors are known. In practice it is observed that for smaller number
K of known spectral templates the value of η in (14) tends to be
larger, indicating a less favorable setting for recovery.

Notice that scenarios that combine the settings in Secs. 3.1
and 3.2, i.e., where the knowledge of the K templates is imperfect,
can be handled by combining the formulations in (7) and (12). This
can be achieved upon implementing the following modifications to
(12): considering the shift S′ as a new optimization variable, replac-
ing the first constraint in (12) with S′ = SK̄ +

∑K
k=1λkvkvT

k , and
adding d(S,S′) ≤ ε as a new constraint [cf. (7)].
Laplacian shifts. Counterparts to the optimizations in (7) and (12)
as well as for the recovery guarantees in Proposition 1 and Theorem
1 can be derived for the case of (normalized) Laplacian operators.
This requires changing the definition of S and accounting for the
fact that the Laplacian has a zero eigenvalue; see [25] for details.

4. NETWORK DECONVOLUTION
The network deconvolution problem is the identification of an ad-
jacency matrix S that encodes direct dependencies when given an
adjacency T that includes indirect relationships. The problem is a
generalization of channel deconvolution and can be solved by mak-
ing T = S (I − S)−1 [27]. This solution assumes a diffusion as
in (1) but for the particular case of a single-pole-single-zero graph

filter. A more general approach is to assume that T can be written as
a polynomial of S but be agnostic to the form of the filter. This leads
to problem formulation (4) with V given by the eigenvectors of T.

In this context, our goal is to identify the structural properties
of proteins from a mutual information graph of the co-variation be-
tween the constitutional amino-acids [23]; see [27] for details. For
example, for a particular protein, we want to recover the structural
graph in the top left of Fig. 1(a) when given the graph of mutual in-
formation in the top right corner. Notice that the structural contacts
along the first four sub-diagonals of the graphs were intentionally
removed to assess the capability of the methods in detecting the con-
tacts between distant amino-acids. The graph recovered by network
deconvolution [27] is illustrated in the bottom left corner of Fig. 1(a)
whereas the one recovered using SpecTemp [the proposed approach
in (7)] is depicted in the bottom right corner. Comparing both recov-
ered graphs, SpecTemp leads to a sparser graph that follows more
closely the desired structure. To quantify this, in Fig. 1(b) we plot
the fraction of the real contact edges recovered for each method as
a function of the number of edges considered, as done in [27]. E.g.,
if for a given method the 100 edges with largest weight in the re-
covered graph contain 40% of the edges in the ground truth graph
we say that the 100 top edge predictions achieve a fraction of re-
covered edges of 0.4. As claimed in [27], network deconvolution
improves the estimation when compared to raw mutual information
data. Nevertheless, from Fig. 1(b) it follows that SpecTemp outper-
forms network deconvolution. Notice that when ε = 0 [cf. (7)] we
are forcing the eigenvectors of S to coincide exactly with those of
the matrix of mutual information S′. However, since S′ is already a
valid adjacency matrix, we recover S = S′. By contrast, for larger
values of ε the additional flexibility in the choice of the eigenvectors
allows us to recover shifts S that more closely resemble the ground
truth. For example, when considering the top 200 edges, the mutual
information and the network deconvolution methods recover 36%
and 43% of the desired edges, respectively, while our method for
ε= 1 achieves a recovery of 53%. In Fig. 1(c) we present this same
analysis for a different protein and similar results can be appreciated.

5. CONCLUSIONS
The problem of identifying a graph-shift operator S – encoding the
topology of a graph G of interest – given its eigenbasis V was stud-
ied. We first formulated the problem when perfect knowledge of V is
available. We then investigated robust recovery for the cases where
we have access to: 1) a noisy version of V; and 2) subset of the
columns of V. We formulated optimization problems to recover S,
presented convex relaxations, and derived theoretical results charac-
terizing the recovery. Finally, we illustrated the performance of the
proposed approach via the identification of amino-acid graphs.
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