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ABSTRACT

Linear structural vector autoregressive models constitute a
generalization of structural equation models (SEMs) and vec-
tor autoregressive (VAR) models, two popular approaches for
topology inference of directed graphs. Although simple and
tractable, linear SVARMs seldom capture nonlinearities that
are inherent to complex systems, such as the human brain.
To this end, the present paper advocates kernel-based nonlin-
ear SVARMs, and develops an efficient sparsity-promoting
least-squares estimator to learn the hidden topology. Numer-
ical tests on real electrocorticographic (ECoG) data from an
Epilepsy study corroborate the efficacy of the novel approach.

Index Terms— Network topology inference, structural
vector autoregressive models, nonlinear

1. INTRODUCTION

Graph topology inference plays a crucial role in network
studies, since edges are often not directly observable, but
network processes may be measurable at nodes. For exam-
ple, one may have access to functional magnetic resonance
(fMRI) time series per brain region, yet the dependency
structure between them is hidden. Granger causality or vector
autoregressive (VAR) models [6], and structural equation
models (SEMs) [11] are widely adopted to infer directed
network topologies. VAR models postulate that causal re-
lationships are captured through time-lagged dependencies
between nodal time series, while SEMs are based on instan-
taneous interactions.

Interestingly, structural vector autoregressive models
(SVARMs) [3] offer a unified view, postulating that nodal
time series result from both instantaneous and time-lagged
interactions with other time series. Indeed, SVARMs are
more flexible and explanatory than VARs and SEMs used
independently, at the expense of increased model complexity.

Contemporary SVARMs are generally based on linear
models, due to their simplicity and tractability. However,
resorting to linear SVARMs is limiting, since interactions
within complex systems (e.g., the human brain) are generally
best captured by nonlinear models. In fact, several variants of
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nonlinear SEMs and VARs have been put forth in several re-
cent works; see e.g., [7,9,10,12,13,15,18,20] and references
therein.

The present paper extends the merits of these prior works,
and puts forth a more general nonlinear SVARM for infer-
ence of directed network topologies. Unlike prior nonlin-
ear modeling efforts for SEMs and VARs, a novel additive
nonlinear model that assumes no knowledge of the link struc-
ture is advocated. The developed estimator leverages kernels
as an encompassing framework for nonlinear learning tasks,
and exploits edge sparsity, which is inherent to most real net-
works. Preliminary tests conducted on real brain signals from
an Epilepsy study demonstrate that estimated brain networks
contain new directed edges that were previously overlooked
by linear SVARMs.

2. PRELIMINARIES

Consider an N -node directed graph, whose topology is un-
known, but a time-series {yit}Tt=1 is observed per node i, over
T time intervals. Traditional linear SVARMs postulate that
each yjt is a linear combination of instantaneous measure-
ments at other nodes {yit}i 6=j , and their time-lagged versions
{{yi(t−`)}Ni=1}L`=1; see e.g., [3]. Specifically, yjt obeys the
following linear time-lagged model

yjt =
∑
i 6=j

a0ijyit +

N∑
i=1

L∑
`=1

a`ijyj(t−`) + ejt (1)

with a`ij capturing the causal influence of node i upon node j
over a lag of ` time points, while a0ij encodes the correspond-
ing instantaneous causal relationship between them. The co-
efficients encode the causal structure of the network, that is,
a causal link exists between nodes i and j only if there exists
a`ij 6= 0 for ` = 0, . . . , L. On the other hand, if a0ij = 0 ∀i, j,
then (1) reduces to classical Granger causality (a.k.a., vec-
tor autoregression); see also [16]. On the other hand, setting
a`ij = 0 for ` = 1, . . . , L, reduces (1) to a special instance of
a linear SEM with no exogenous inputs [11].

Let A` ∈ RN×N denote the “time-lagged” adjacency ma-
trix, with

[
A`
]
ij

= a`ij . Given the multivariate time series

{yt}Tt=1, where yt := [y1t, . . . , yNt]
>, the goal is to esti-
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mate the coefficient matrices {A`}L`=1, and consequently un-
veil the hidden network topology. Although generally known,
one can readily deduce L via standard model order selection
tools e.g., the Bayesian information criterion [4], or Akaike’s
Information Criterion (AIC) [2].

With the topology known, several approaches have been
put forth to learn the model coefficients. Examples are based
upon ordinary least-squares [3], hypothesis tests developed
to detect presence or absence of pairwise causal links under
prescribed false alarm rates [16], and proximal gradient it-
erations exploiting known network structural properties [15].
Albeit conceptually simple and computationally tractable, the
linear SVARM is incapable of capturing nonlinear dependen-
cies inherent to complex networks such as the human brain.
The present paper generalizes the linear SVARM in (1) to a
nonlinear kernel-based SVARM.

3. NONLINEAR SVARM

Aiming for enhanced flexibility and accuracy, we transcend
the linearity assumption, and resort to more general nonlin-
ear models which encompass their linear counterparts as spe-
cial cases. Consistent with the instantaneous and time-lagged
structure inherent to the linear SVARM, we postulate that [cf.
(1)]

yjt = ψ0
j (y−jt) +

L∑
`=1

ψ`j (yt−`) + ejt (2)

where y−jt := [y1t, . . . , y(j−1)t, y(j+1)t, . . . , yNt]
> collects

present observations on all nodes but the j-th one, at time
slot t, and ψ`j(.) denotes a nonlinear function. Inspired by
generalized additive models (GAMs) [8, Ch. 9], we further
posit that

ψ0
j (y−jt) =

∑
i 6=j

a0ijψ
0
ij (yit) (3)

ψ`j(yt−`) =

N∑
i=1

a`ijψ
`
ij(yi(t−`)), ` = 1, . . . , L (4)

with each ψ`ij(.) denoting a nonlinear univariate function.
Note that (3) and (4) deviate from traditional GAMs by inclu-
sion of the explicit unknown coefficients {a`ij}, which will
facilitate identification of the directed graph edges. Further-
more, suppose that {ψ`ij(yit)} are expressed as

ψ`ij(yit) =

P∑
p=1

c`ijpφ
`
p(yi(t−`)) (5)

where {c`ijp}Pp=1 are unknown coefficients, but {φ`p(.)}Pp=1

are (possibly) known functions, and P can take on any posi-
tive integer or even infinity. Letting c`ij := [c`ij1, . . . , c

`
ijP ]

>,

and defining φ`(yit) := [φ`1(yit), . . . , φ
`
P (yit)]

>, one obtains
the following nonlinear SVARM [cf. (2) –(5)]

yjt =
∑
i6=j

a0ij(φ
0)>(yit)c

0
ij

+

N∑
i=1

L∑
`=1

a`ij(φ
`)>(yit)c

`
ij + ejt (6)

for j = 1, . . . , N , and t = 1, . . . , T . Let ỹj := [yj1, . . . , yjT ]
>,

ej := [ej1, . . . , ejt]
>, Y := [ỹ1, . . . , ỹN ], and define

Φ`
i := [φ`(yi1), . . . ,φ

`(yiT )]
>, and Φ` := [Φ`

1, . . . ,Φ
`
N ].

One then obtains the nonlinear SVARM in matrix form

Y =

L∑
`=0

Φ`W` + E (7)

where

W` :=

 a`11c
`
11 · · · a`1Nc`1N

...
. . .

...
a`N1c

`
N1 · · · a`NNc`NN

 (8)

is an NP ×N block matrix, whose structure is modulated by
the entries of A`. For instance, if a`ij = 0, then a`ijc

`
ij is an

all-zero block regardless of the values of entries in c`ij .
It is worth observing that real-world networks often ex-

hibit edge sparsity, that is, A` has only a few nonzero entries,
and more efficient estimators can be realized by capitalizing
on this prior knowledge. Note that entries {a`ij} determine
whether certain blocks are all-zero or not [cf. (8)], naturally
leading W` to exhibit group sparsity. The rest of the paper
will leverage this group sparsity, and put forth a novel kernel-
based estimator for inference of the unknown network topol-
ogy. The problem can now be formally stated as follows.
Problem statement. Given nodal measurements Y in (7),
the goal is to estimate the edge-modulated matrix W`, and
correspondingly the unknown adjacency matrix A`. Whether
Φ is (un)known will be clarified in the ensuing section, which
puts forth a novel estimator.

4. KERNEL-BASED TOPOLOGY ESTIMATION

To estimate the unknowns in (7) with no prior knowledge
about additive noise statistics, the present paper advocates a
regularized least-squares (LS) estimator, namely,

argmin
W0∈W, {W`}L`=1

(1/2)

∥∥∥∥Y −∑L
`=1 Φ`W`

∥∥∥∥2
F

+
∑L
`=1 λ`‖W`‖G,1 (9)

whereW := {W0 ∈ RNP×N : w0
ii = 0, i = 1, . . . , N},

and with w`
ij := a`ijc

`
ij denoting the (i, j)-th block of W`.

The constraint setW restricts solutions to network topologies
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free of self-loops; that is, a0ii = 0 ⇐⇒ w0
ii = 0. Further-

more, the penalty term ‖W`‖G,1 :=
∑
i,j ‖w`

ij‖2 is a well-
known regularizer that has been shown to promote group spar-
sity [22], while the regularization parameters {λl ≥ 0} allow
the estimator to trade off group sparsity for the LS fit, and can
take different values. For simplicity, it will be assumed in the
sequel that λ1 = . . . = λL = λ.

With {φ`}L`=0 available, the regularized cost in (9) is
jointly convex with respect to (w.r.t.) {W`}, and in principle
the problem can be solved to global optimality. The solutions
{Ŵ`}L`=0 contain all the information necessary to recover
the graph topology captured by {A`}, by simply identifying
nonzero blocks. But {Φ`} may not be available, since one
may not know the functions {φ`p(.)}Pp=1 explicitly. Moreover,
even when {φ`p(.)}Pp=1 are known, it may be impossible to
efficiently solve (9), as P → ∞. In lieu of these challenges,
the present paper advocates kernel-based approaches that
have well-appreciated merits in nonlinear modeling, often
circumventing the need for explicit knowledge of the non-
linear mappings. The kernel-based estimator developed next
will rely on the following result, which is a variant of the
representer theorem [21], and its proof can be found in [18].

Proposition 1: If {Ŵ`}L`=0 is the optimal solution of the reg-
ularized LS estimator in (9), with ŵ`

ij denoting the (i, j)-th

block entry of Ŵ`, then ŵ`
ij can be written as

ŵ`
ij =

T∑
t=1

α`ijtφ
`(yit) = (Φ`

i)
>α`ij , ∀i, j, ` (10)

where α`ij := [α`ij1, . . . , α
`
ijT ]
> is a T × 1 coefficient vec-

tor.
Acknowledging Proposition 1, and substituting (10) into (9),
the LS term can be written as

(1/2)‖Y −
L∑
`=0

Φ`W`‖2F

=

N∑
j=1

(1/2)

∥∥∥∥ỹj−∑
i 6=j

Φ0
i (Φ

0
i )
>α0

ij−
L∑
`=1

N∑
i=1

Φ`
i(Φ

`
i)
>α`ij

∥∥∥∥2
2

+ λ

N∑
j=1

N∑
i=1

√
α>ijΦ

`
i(Φ

`
i)
>α`ij . (11)

Clearly, each entry of Φ`
i(Φ

`
i)
> constitutes an inner product

in the “lifted” space; i.e., [Φ`
i(Φ

`
i)
>]k,l = (φ`(yik))

>φ`(yil).
Defining the set of kernel matrices {K`

i ∈ RM×M}Ni=1, with
K`
i := Φ`

i(Φ
`
i)
>, it is possible to recast the estimator (9), so

that all dependencies on the functions {φ`(.)} are captured
through entries of K`

i , for i = 1, . . . , N . Accordingly, one
obtains the following estimator of the coefficient vector in
(10) for each ` = 1, . . . , L

{α̂`ij} = arg min
α̂0
ii=0,{α`

ij}
(1/2)‖Y −

L∑
`=1

K̃`W`
α‖2F

+ λ

L∑
`=0

N∑
j=1

N∑
i=1

‖(K`
i)

1/2α`ij‖2 (12)

where K̃` := [K`
1, . . . ,K

`
N ], W`

α := [α`0, . . . ,α
`
N ], and

α`j := [(α`1j)
>, . . . , (α`Nj)

>]>. Examination of (12) reveals
that Wα inherits the block-sparse structure of W; that is,
w`
ij = 0⇔ α`ij = 0.

For ease of exposition, let the equality constraints (α`jj =
0) temporarily remain implicit. Introducing the change of
variables γ`ij = (K`

ij)
1/2αij , problem (12) can be equiva-

lently recast as

arg min
{α`

ij}
(1/2)‖Y −

∑L
`=0 K̃`W`

α‖2F +
∑L
`=0 g(Γ

`)

s.t. γ`ij − (K`
ij)

1/2α`ij = 0 ∀i, j, ` (13)

where Γ` := [γ`1, . . . ,γ
`
N ], γ`j := [(γ`1j)

>, . . . , (γ`N )>]> ,
and g(Γ`) := λ

∑N
i=1

∑N
j=1 ‖γ`ij‖2 is the nonsmooth regu-

larizer.
Given matrices Y and K̃`, the next section capitalizes on

convexity to develop efficient topology inference algorithms
to estimate {α`ij}. Proximal-splitting approaches have been
shown useful for convex optimization when the cost func-
tion comprises both smooth and nonsmooth components [5].
Prominent among these is the alternating direction method of
multipliers (ADMM), see e.g., [17] for an early application of
ADMM to distributed estimation. In the next section, a novel
approach leveraging ADMM iterations will be introduced to
solve (13), and henceforth identify the graph topology.

4.1. ADMM solver

Let D`:=Bdiag(K`
1, . . . ,K

`
N ), and D:=Bdiag(D0, . . . ,D`),

where Bdiag(.) is a block diagonal of its matrix arguments.
One can then write the augmented Lagrangian of (13) as

Lρ(Wα,B,Γ,Ξ) = (1/2)‖Y − K̃Wα‖2F + g(Γ)

+ 〈Ξ,D1/2Wα − Γ〉+ (ρ/2)‖Γ−D1/2Wα‖2F (14)

where K̃ := [K̃0, . . . , K̃L], Wα := [(W0
α)
>, . . . , (WL

α)
>]>,

and Γ := [(Γ0, )> . . . , (ΓL)>]>. Note that Ξ is a matrix of
dual variables that collects Lagrange multipliers correspond-
ing to the equality constraints introduced in (13), 〈P,Q〉
denotes the inner product between P and Q, while ρ > 0
is prescribed a priori as a penalty parameter. ADMM boils
down to a sequence of alternating minimization (AM) itera-
tions to minimize Lρ(Wα,B,Γ,Ξ) over the primal variables
Wα,B, and Γ, followed by a gradient ascent step over the
dual variables Ξ; see also [1, 17]. Per iteration k + 1, this
entails the following provably-convergent steps, see e.g. [17]

Wα[k + 1] = argmin
Wα

Lρ(Wα,Γ[k],Ξ[k]) (15a)
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Γ[k + 1] = argmin
Γ

Lρ(Wα[k + 1],Γ,Ξ[k]) (15b)

Ξ[k + 1] = Ξ[k] + ρ(D1/2Wα[k + 1]− Γ[k + 1]). (15c)

Focusing on Wα[k+ 1], note that (15a) decouples across
columns of Wα, and admits closed-form, parallelizable so-
lutions. Incorporating the structural constraint α0

jj = 0, one
obtains the following decoupled subproblem per column j

α̃j [k + 1] =

argmin
α̃j

(1/2)α̃>j

(
K̃>j K̃j + ρDj

)
α̃j − α̃>j qj [k] (16)

where α̃j denotes the (NL − 1)T × 1 vector obtained
by removing entries of the j-th column of Wα indexed
by Ij := {(j − 1)T + 1, . . . , jT}. Similarly, K̃j col-
lects columns of K̃ excluding the columns indexed by
Ij , the block-diagonal matrix Dj is obtained by eliminat-
ing rows and columns of D indexed by Ij , while qj [k]
is constructed by removal of entries indexed by Ij from
ρD1/2γj [k] + K̃>ỹj − D1/2ξj [k], with ξj [k] denoting the

j-th column of Ξ[k]. Assuming
(
K̃>j K̃j + ρDj

)
is invert-

ible, the per-column subproblem (16) admits the following
closed-form solution per j

α̃j [k + 1] =
(
K̃>j K̃j + ρDj

)−1
qj [k]. (17)

On the other hand, (15b) can be solved per component vector
γ`ij , and a closed-form solution can be obtained via the so-
termed group shrinkage operator for each i and j, namely,

γ`ij [k] = Pλ/ρ
(
(K`

i)
1/2α`ij [k + 1] + ξ`ij [k]/ρ

)
(18)

where Pλ(z) := (z/‖z‖2)max(‖z‖2 − λ, 0). Upon con-
vergence, {a`ij} can be determined by thresholding α̂`ij , and
declaring an edge present from i to j if there exists any α̂`ij 6=
0, for ` = 1, . . . , L.

5. NUMERICAL TESTS

Dataset description. Nodal time-series were obtained from
an Epilepsy study reported in [14]. A 76-electrode grid
was implanted into the subject’s brain, and electrocortico-
graphic (ECoG) time series spanning 0.5s were recorded
per electrode (node). The goal of the experiment was to as-
sess whether modeling nonlinearities, and adopting the novel
algorithm would yield significant insights pertaining to effec-
tive dependencies between brain regions, that linear versions
would otherwise fail to capture.
Results. Figure 1 depicts networks inferred from different al-
gorithms for both preictal and ictal intervals of the time series.
The figure illustrates results obtained by the linear SVARM
and the K-SVARM approach. Each node in the network is

(a) (b)

(c) (d)

Fig. 1: Visualizations of networks inferred from ECoG data:
(a) linear SVARM with L = 1 on preictal time series; (b)
linear SVARM withL = 1 on ictal time series; (c) K-SVARM
with L = 1 on preictal time series, using a polynomial kernel
of order 2; (d) the same K-SVARM on ictal time series.

representative of an electrode. A cursory inspection of the
visual maps reveals significant variations in connectivity pat-
terns between ictal and preictal intervals. Specifically, net-
works inferred via the K-SVARM, reveal a global decrease in
the number of links emanating from each node, while those
inferred via the linear model depict increases and decreases
in links connected to different nodes. Clearly, acknowledg-
ing that interactions among brain regions may be driven by
nonlinear dynamics, the novel nonlinear modeling framework
facilitates discovery of global change in connectivity pattern
that may not be captured by linear SVARMs.Due to space
constraints, more extensive numerical tests can be found in
an extended version of the paper [19].

6. CONCLUSIONS

This paper put forth a novel nonlinear SVARM framework for
inference of sparse directed network topologies. Adopting
a regularized LS estimator, and leveraging kernels, ADMM
iterations were developed to estimate the network topology.
Tests on real data from an Epilepsy study demonstrated that
the novel approach is capable of identifying structural differ-
ences in the brain network that could not be captured by the
linear model. Future directions include broadening the scope
of the approach to dynamic networks, and distributed imple-
mentations that are suitable for large-scale networks.
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