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Abstract—Hybrid beamforming (HBF) is a potential solution
to reduce the baseband hardware cost in massive multiple-input
multiple-output (MIMO) systems that has drawn considerable
attention recently. In this paper, we consider the uplink of a
multiuser massive MIMO system in the presence of blockers.
Such blockers, which arise from, for example, users served
by other non-cooperative base stations (BSs), can limit the
system performance if not handled properly. We propose a
HBF scheme that can remove the impact of blockers, while
preserving signals from intended users. Specifically, in our two-
step receive beamforming scheme, the analog beamformer (ABF)
is designed based on channel covariance matrices to minimize the
powers of blockers, while the digital beamformer (DBF) deals
with inter-user interference. We propose an iterative algorithm
that efficiently gives a good sub-optimal solution to the NP-
hard problem in the ABF design. Moreover, we consider a
more complete BS architecture by incorporating automatic gain
control (AGC) and analog-to-digital converter (ADC). As we show
in the simulations, for a system with full-precision ADCs, our
scheme approaches the sum rate of an ideal fully-digital system.
Interestingly, for a system with low-resolution ADCs, our HBF
scheme can even outperform a fully-digital system.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) system is
envisioned as a key enabler to meet the exponentially growing
data demand in future wireless communication networks. It has
been shown that, by deploying M � 1 antennas at the base
stations (BSs), massive MIMO can offer huge improvement
in spectral efficiency with simple linear processing schemes,
such as matched-filtering (MF) and zero-forcing (ZF) [1].
Nevertheless, the cost of building such a system is still
prohibitive if each of the M antennas is connected to an
individual digital chain. Recently, a hybrid BS architecture
has been proposed to reduce the cost by adopting a two-
stage beamforming scheme [2], [3]. Specifically, such a hybrid
architecture splits the beamforming into analog and digital
domains, where the analog beamforming is realized by a
power-efficient and cost-effective phase-shifter network, which
reduces the required number of digital chains from M to N
(N ≤ M ). In principle, introducing the additional analog
beamforming (ABF) and limiting the number of digital chains
may degrade the system performance. However, due to the
limited local scattering nature of MIMO channels, the number
of active channel eigenmodes may be much less than M [4],
[5]. Thus, if the ABF is properly designed, the performance
degradation may be negligible [6].

There are a few existing works on hybrid beamforming
(HBF), which cover both mmWave and low-frequency chan-
nels [2], [3], [6]–[10]. The pioneering work [2] provides a low-
complexity hybrid precoding design algorithm, by exploiting
the sparse nature of mmWave channels. Then, [3] extends the
work in [2] to the case when only partial channel state infor-
mation (CSI) is available. A novel bi-convex approximation
approach is proposed in [6] in order to design the HBF, such
that the minimum achievable rates of users can be maximized.
In [8], the authors propose a simple MF-like HBF scheme for
low-frequency channels under the assumption of perfect CSI.
Channel estimation with hybrid BS architectures have been
addressed in [8], [9]. Recently, low-resolution analog-to-digital
converters (ADCs) have also been brought into the framework
of HBF [10], where a comprehensive study on the trade-off
between energy efficiency and spectral efficiency is presented.

In this paper, we study the receive HBF design in the
uplink of a single-cell multiuser massive MIMO system. In
contrast to prior works, we consider a practical scenario with
blockers presenting in the system. These blockers can be
caused by unscheduled users, intentional jammers, etc.; and
they can cause a substantial interference.1 Engineers believe
that a robust system should be able to handle blockers that
are up to 60 dB stronger than the signal of interest (SOI).
Besides blockers, we also consider a more complete system
architecture by incorporating two essential components: auto-
matic gain control (AGC) and ADC. AGC rescales the received
signal such that it fits the dynamic range of the ADC, while the
ADC quantizes the continuous signals into discrete values. In
such a system, blockers may severely distort the SOI, hence
we aim to remove as much as possible the blockers in the
analog domain. Specifically, formulate the ABF design as a
max signal-to-noise-plus-interference ratio (SINR) problem,
subject to the constant modulus constraint that arises from the
nature of fixed-gain phase shifters used by the ABF. Based on
the work of unimodular programming (UQP) [11], we propose
a two-step iterative algorithm that can efficiently provide a
good sub-optimal solution to this optimization problem, which

1One simple example would be the following: two closely spaced users
operating at the same time/frequency are served by two non-cooperative BSs,
while user-1 is served by BS-1 and user-2 is served by BS-2. If user-1 is
close to BS-1, but user-2 is on the cell edge of BS-2, then, with uplink power
control, the transmit power of user-2 will be much larger than user-1, such
that the signal of MS-1 can be blocked at BS-1.
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is in general NP-hard. Our simulation results show that, for
systems with full-precision ADCs, our scheme approaches the
sum rate achieved by ideal and fully digital systems, with only
marginal degradation. For systems with low resolution ADCs,
our HBF scheme can even outperform fully digital systems.
This counter-intuitive result is mainly due to the impact of
blockers and the joint effects of AGC and ADC, which will
be discussed in more detail in the paper.

Notation: Upper and lower case boldface letters denote
matrices and vectors, respectively. The n × n identity matrix
is represented by In. The superscripts (·)H and (·)−1 stand
for Hermitian transposition and matrix inverse, respectively.
The symbol CN (m,Σ) denotes a multi-variate circularly-
symmetric complex Gaussian (CSCG) distribution with mean
m and covariance Σ. For any matrix H ∈ Cm×n, hi is the
i-th column of H. The element-wise exponentiation of matrix
A is denoted by eA, and arg(A) returns the element-wise
phases of matrix A.
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Fig. 1. Hybrid BS architecture.

II. SYSTEM AND SIGNAL MODELS

We consider the uplink of a single-cell multiuser massive
MIMO system, where the BS is equipped with M antennas and
simultaneously serves K single-antenna users. The received
signal y ∈ CM×1 at the BS can then be expressed as

y = Hx + Hbxb + n, (1)

where x ∈ CK×1 and xb ∈ CKb×1 concatenate the signals
transmitted by all K users and all Kb blockers, respectively,
where Kb is unknown. The additive white Gaussian noise
(AWGN) is represented by n ∈ CM×1 ∼ CN (0, IM ). We
denote H = [h1 h2 . . . hK ] ∈ CM×K as the channel
between the K users and the BS, while we use Hb as the
channel of blockers.

The channel of user k, denoted by hk, is modeled as
hk = R

1
2

kαk, ∀k = 1, . . . ,K, where αk ∈ CM has
i.i.d. CSCG entries with zero mean and unit variance; and
Rk ∈ CM×M is the corresponding spatial correlation matrix.

For massive MIMO systems, the rank of Rk, denoted by
rk, may be much smaller than M [5], [6], therefore we can
alternatively represent hk as

hk = UkΛ
1
2

k ak, (2)

where Λk is an rk × rk diagonal matrix whose diagonal ele-
ments are the nonzero eigenvalues of Rk, while Uk ∈ CM×rk

contains the corresponding eigenvectors; ak ∈ Crk is truncated
from αk, thus each of its elements also follows CN (0, 1).

As shown in Fig.1, the received signal y is firstly weighted
by the ABF matrix W ∈ CM×N , and each of the N outputs
is fed into AGC and then ADC. Finally, the quantized signals
are processed by DBF at the baseband. Specifically, the signal
after each processing step can be expressed as shown below.
After ABF:

ya = WHy. (3)

After AGC:
yg = diag(c)ya, (4)

where ci =
√

c
Pyai

,∀i = 1, . . . , N, rescales the power of
the ith element of ya such that the output power satisfies the
dynamic range of the corresponding ADC.
After ADC:

yq = Q(yq) = κyg + nq, (5)

where Q(·) is the quantization operation performed by the
ADCs, and nq models the additive quantization noise. A
uniform linear quantizer will be assumed, such that yg and nq

are (approximately) uncorrelated [12], and that nq has mean
0, and variance κ(1− κ)σ2

yg
, where κ is a real scalar that

depends on the type of ADC, and σ2
yg

is the variance of the
corresponding input to the ADCs. This is in accordance with
the additive quantization noise model (AQNM) in [12].
Finally, after DBF, the signal is recovered as

yd = GHyq, (6)

= GH(κyg + nq), (7)

= GH(κdiag(c)ya + nq), (8)

= GH(κdiag(c)WHy + nq), (9)

= GH(Heqx + neq), (10)

where neq , κdiag(c)WH (Hbxb + n) + nq is the total
effective noise, and Heq = κdiag(c)WHH is the effective
channel seen at the baseband. The DBF G is then designed
based on Heq. Thanks to the reduced dimension, Heq can be
estimated using conventional techniques, such as least-square
(LS) estimation or minimum mean-square error (MMSE)
estimation. For brevity, we assume that Heq is known at the
baseband.

III. PROBLEM FORMULATION

In this paper, we consider the special case N = K, i.e.,
we use the minimum number of digital chains required in
the BS. Extension to the general case N > K will be
studied in future work. As explained in Section II, we consider
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blockers’ presence in the system, and both AGC and ADC
are incorporated in the BS architecture. The joint effect of
AGC and ADC is illustrated in Fig.2, where the areas of green
and red blocks denote the powers of SOI and blockers plus
AWGN, respectively. AGC rescales the input signal power
to fit the dynamic range of the ADC, denoted by the black
box, while preserving the ratio between SOI and blockers plus
AWGN. Then, this rescaled signal is fed into the ADC, where
a scaled version of the input signal is produced with additive
quantization noise, as we have explained in Section II. As one
can envision, if blockers are not removed properly, the SOI that
remains in the end may be overwhelmed by the quantization
noise. Therefore, before entering AGC, it is crucial to design
an ABF that can remove the impact of blockers as much as
possible.

AGC ADC

Signal of interest

Blockers and AWGN

Quantization noise

Dynamic range of ADC

Fig. 2. Illustration of the joint effect of AGC and ADC.

In light of this, we design the ABF W , [w1 . . .wK ]
according to the following max-SINR criterion:

(P1) : max
wk

wH
k Rkwk

wH
k RIwk

s.t. wk ∈ CM,

for k = 1, . . . ,K, where CM denotes the set of vec-
tors/matrices that satisfy the unit constant modulus constraint,
i.e., CM = {A ∈ Cm×n

∣∣|Ai,j | = 1,∀i = 1, . . . ,m, j =

1, . . . , n}, while RI , Rb + IM is the covariance matrix
of blockers plus AWGN. In this paper, we assume that the
channel covariance matrices Rk are known, and that Ry , the
covariance matrix of the received signal, can be measured [13].
Thus, we can directly obtain RI by subtracting

∑K
i=1 Ri from

Ry , i.e., RI = Ry−
∑K

i=1 Ri. It can be observed that our aim
is to maximize the proportion of SOI after AGC processing.

Please note that if we discard the constant modulus con-
straint, the solution to (P1) can be found by solving the
generalized eigenvalue problem

RIwk = λRkwk, (11)

and the optimal beamformer wk is given by the eigenvector
that corresponds to the smallest generalized eigenvalue of the
matrix pencil {RI ,Rk}, which is known as the generalized
Capon (G-Capon) beamformer [14]. However, it can be proved
that the constant modulus constraint imposes NP-hardness

to (P1), which makes finding the global optimal solution
prohibitive [15]. Hence, in the following, we resort to find
good sub-optimal solutions.

IV. ALGORITHM TO SOLVE (P1)

In this section, we present our iterative algorithm that solves
(P1) in two steps.

In the first part, we focus on the problem below:

(P2) : max
w

wHRw

s.t. w ∈ CM,

where R is some symmetric positive semidefinite matrix, and
w ∈ CM×1 is the unit modulus vector that maximizes the
quadratic form wHRw. Despite its NP-hardness, there exists
polynomial time approximations that give good sub-optimal
solutions, e.g., Gaussian randomization technique [15]; how-
ever, this method is not scalable as M goes large. Recently,
a so-called power-iteration method has been applied to tackle
this problem, which can effieciently provide a good solution
[11]. This algorithm is summarized in the following lemma:

Lemma 1: Let w(t+1) = ej·arg(Rw(t)), where t = 0, 1, . . .
denotes the index of iteration. Then, given an arbitrary staring
point w(0), w(t) converges to a local optimum of (P2) as
t→∞.

Proof: A detailed proof can be found in [11].
Basically, this algorithm ensures that w(t+1)HRw(t) is mono-
tonically increasing in each iteration. Moreover, it is also
observed that the quadratic objective function in (P2) is upper
bounded by the sum of absolute values of each element in R.
Therefore, convergence is always guaranteed.

In the second part of our algorithm, we resort to the
Dinkelback’s approach [16], and start by defining a new
function f(w) as

f(w) ,
a(w)

b(w)
, (12)

where a(w) = wHRIw and b(w) = wHRw, the user index
k is dropped at this stage for simplicity. It can be seen that the
objective function in (P1) is precisely 1

f(w) , thus, maximizing
the SINR is equivalent to minimizing f(w). Next, we define
another function

g(w,wc) , a(w)− f(wc)b(w) = wH (RI − f(wc)R)w,
(13)

where wc denotes some known value of w. It can be easily
verified that g(wc,wc) = 0. Furthermore, let

w? = argmin
w∈CM

g(w,wc), (14)

then, we have

g(w?,wc) = a(w?)− f(wc)b(w
?) ≤ g(wc,wc) = 0. (15)

Hence, for any b(w?) 6= 0, we observe that f(w?) ≤ f(wc),
i.e., we can iteratively replace wc with the current opti-
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mal value w?, until f(w) reaches its minimum.2 Now, let
λmax be the largest eigenvalue of RI − f(wc)R, and define
R̃ , λmaxIM − (RI − f(wc)R), it follows readily that R̃ is
positive semidefinite. Moreover, it is straightforward to show
that w? in (14) is identical to the following

w? = argmax
w∈CM

g̃(w,wc), (16)

where g̃(w) , wHR̃w. The optimal solution to (16) can be
directly obtained by using Lemma 1. Please note that, although
Lemma 1 only gives a local optimum, it is enough for our
algorithm to converge, at least locally. Finally, we summarize
the whole algorithm in Algorithm 1.

Algorithm 1
1: Initialization: Set arbitrary initial values to w0 ∈ CM,

and thresholds σ1, σ2 ∈ R.
2: for k = 1 to k = K do
3: wc ← w0

4: λmax ← the largest eigenvalue of RI − f(wc)Rk

5: R̃← λmaxIM − (RI − f(wc)Rk)

6: wk ← ej·arg(R̃wk)

7: while |f(wk)− f(wc)| > σ1 do
8: wc ← wk

9: update λmax according to Step 4
10: update R̃ according to Step 5
11: update wk according to Step 6
12: while |g̃(wk)− g̃(wc)| > σ2 do
13: update wc according to Step 8
14: update wk according to Step 6
15: end while
16: end while
17: end for

V. NUMERICAL RESULTS

In this section, we evaluate the sum rate of a single-cell
multiuser massive MIMO system, where the BS, equipped
with M = 30 antennas, serves K = 10 single-antenna users.
We take into account the impacts of low precision ADCs and
blockers, and compare the sum rates achieved by both fully
digital and hybrid BS architectures. For fully-digital system,
G-Capon beamformer is used, while for hybrid system, the
ABF is obtained according to Algorithm 1, and the DBF
is also a G-Capon beamformer which is designed based on
the equivalent channel. Hence, we can see the penalty by
introducing the additional ABF.

For systems with full-precision ADCs, as shown in Fig.
3, we observe that both fully-digital and hybrid systems are
resilient to blockers, which is a direct consequence of our
beamformer design criterion. We also notice that our proposed
HBF introduces only a small penalty of sum rate, yet saving
66% of the digital chains.

2Since f(w) is always lower bounded by 0, convergence is guaranteed.

For a more realistic case, where low-precision ADCs are
used in the systems, we see quite different results. When no
blockers are in presence, we notice that hybrid systems are
more severely affected by the quantization noise than fully-
digital systems. This is due to the fact that hybrid systems have
much fewer digital chains, which results in a less averaging
effect of quantization noise. However, when blockers exist in
the system, we observe a very interesting phenomenon: the
hybrid system can even outperform a fully-digital system! This
seemingly controversial observation arises from the robustness
of having a two-step processing. In a fully-digital system, all
interference enters the system without any treatment, and as a
result the aggregate received signal may contain a large portion
of “noise”, whose level maintains after the AGC processing.
Effectively, the remaining signal may be heavily corrupted
by quantization noise generated by the finite-precision ADCs,
such that the SOI becomes difficult to detect. For a hybrid
system, however, most impacts of blockers are removed by
the ABF. If this is done perfectly, we can expect marginal
difference between the blocking and the non-blocking cases
in a hybrid system, as we can see in Fig. 3.
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Fig. 3. Sum rates by digital and hybrid beamformers.

VI. CONCLUSION

In this paper, we considered hybrid beamforming design in
uplink massive MIMO systems, in the presence of blockers.
Incorporating the impacts of AGC and finite-precision ADCs,
we formulated the ABF design as a max-SINR optimization
problem, and proposed a two-step iterative algorithm with very
good results. In general, our proposed scheme can achieve sim-
ilar performance compared to fully-digital systems, by using
only a small portion of the digital chains. More importantly,
we found that, for systems with finite-precision ADCs, fully-
digital systems can be heavily corrupted by blockers, while
hybrid systems were quite robust. In such a case, hybrid
systems can even achieve higher sum rate than fully-digital
systems.
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