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ABSTRACT

Millimeter wave (mmWave) systems will likely employ large
antennas at both the transmitter and receiver for directional
beamforming. Hybrid analog/digital MIMO architectures
have been proposed previously for leveraging both array gain
and multiplexing gain, while reducing the power consump-
tion in analog-to-digital converters. Channel knowledge is
needed to design the hybrid precoders/combiners, which is
difficult to obtain due to the large antenna arrays and the
frequency selective nature of the channel. In this paper, we
propose a sparse recovery based time-domain channel es-
timation technique for hybrid architecture based frequency
selective mmWave systems. The proposed compressed sens-
ing channel estimation algorithm is shown to provide good
estimation error performance, while requiring small training
overhead. The simulation results show that using multiple RF
chains at the receiver and the transmitter further reduces the
training overhead.

Index Terms— Millimeter wave communication, channel
estimation, hybrid architecture, compressed sensing.

1. INTRODUCTION

Millimeter wave (mmWave) based communication is a key
ingredient of 5G wireless systems for realizing gigabits-
per-second data rates [1–4]. To provide sufficient received
power in mmWave systems, large antenna arrays need to be
deployed at both the transmitter and the receiver [3,5]. Devel-
oping low-overhead mmWave channel estimation techniques
is crucial for acquiring channel state information used to de-
sign precoding matrices in mmWave MIMO [6] and mmWave
massive MIMO systems [7, 8]. This is, however, complicated
due to hardware constraints and low signal-to-noise-ratios
(SNR) without beamforming in the antenna front-end [9].

MmWave channel estimation via analog beam train-
ing [10, 11] works for both narrowband and wideband sys-
tems, but only supports a single communication stream.
Channel estimation and precoding using hybrid architectures
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have been studied in [6, 12, 13]. While fully digital channel
estimation [14] is infeasible at mmWave due to hardware
constraints [9], prior work assuming hybrid architecture con-
sidered mainly narrowband mmWave systems. In practice,
however, mmWave channels will be wideband and frequency
selective. In [15], hybrid precoding for frequency selective
mmWave systems was studied, though the channel estimation
techniques were not elaborated, especially for single-carrier
modulation which is a promising solution for mmWave [16].
In [7], wideband mmWave channel estimation assuming hy-
brid architecture and an OFDM system with ideal settings
was considered.

In this paper, we propose a time-domain wideband chan-
nel estimation technique that works for both MIMO and mas-
sive MIMO mmWave systems using a hybrid architecture.
The time-domain channel estimation approach is beneficial
in single-carrier mmWave systems. The proposed technique
can be used to enable MIMO and multi-user communication.
The primary focuses of the paper is to formulate the wide-
band channel estimation in large antenna systems as a sparse
recovery problem, leveraging the structure in the frequency
selective mmWave channel while considering the hardware
constraints at mmWave. These system constraints include the
frame structure, finite bandwidth of the pulse shaping filter
used at the transceivers, and the hybrid architecture. It is
shown through simulation results that the proposed algorithm
requires significantly fewer training steps to reliably estimate
the channel by utilizing multiple RF chains at the transceivers.

Notation: In this paper, ||A||F is the Frobenius norm, and
A∗, Ā and AT are the conjugate transpose, conjugate, and
transpose of the matrix A. The (i, j)th entry of matrix A is
denoted using [A]i,j . The Khatri-Rao product of A and B is
denoted as A ◦B is, and A⊗B is their Kronecker product.

2. SYSTEM MODEL

The algorithm proposed in the next section can be used in both
single-user and multi-user MIMO systems when the downlink
channel is estimated independently at every user side. Due
to the lack of space, we only develop the signal model for a
single-user mmWave MIMO system with a transmitter having
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Fig. 1. Figure illustrating the transmitter and receiver struc-
ture assumed in the paper. The RF precoder and the combiner
are implemented using a network of phase shifters.

Nt antennas and a receiver with Nr antennas. Both the trans-
mitter and the receiver are assumed to have NRF RF chains
as shown in Fig. 1. In the time domain, the transmitter uses
a hybrid precoder [15, 17] F = FRFFBB ∈ CNt×Ns , Ns be-
ing the number of data streams that can be transmitted. Since
we focus on time-domain channel estimation in this paper,
note that we dropped the subcarrier index usually used with
frequency selective hybrid precoders and combiners, and as-
sume frequency flat beamforming for simplicity. Denoting
the symbol vector at instance n as s[n] ∈ CNs×1, satisfying
E[s[n]s∗[n]] = 1

Ns
I, the signal transmitted at discrete-time n

is s̃[n] = Fs[n].
The Nr ×Nt channel matrix between the transmitter and

the receiver is assumed to be frequency selective, having a de-
lay tap length Nc and is denoted as Hd, d = 0, 1, ..., Nc −
1. With ρ denoting the average received power and v[n] ∼
N
(
0, σ2I

)
denoting the circularly symmetric complex Gaus-

sian distributed additive noise vector, the received signal is

r[n] =
√
ρ

Nc−1∑
d=0

HdFs[n− d] + v[n]. (1)

In the time-domain, the receiver applies a hybrid combiner
W = WRFWBB ∈ CNr×NRF so that the post combining
signal at the receiver is

y[n] =
√
ρ

Nc−1∑
d=0

W∗HdFs[n− d] + W∗v[n]. (2)

A similar expression for the received signal at every user can
be obtained if a mmWave massive MIMO system is consid-
ered and pilot contamination is neglected.

There are several RF precoder and combiner architectures
that can be implemented [13]. In this paper, we assume a fully
connected phase shifting network. We assume a hardware
constraint that only the quantized angles in the set

A =

{
0,

2π

2NQ
, · · · ,

(
2NQ − 1

)
2π

2NQ

}
(3)

can be realized in the phase shifters. Here, NQ is the number
of angle quantization bits. This implies [F]i,j = 1√

Nt
ejϕi,j

and [W]i,j = 1√
Nr
ejωi,j , with ϕi,j , ωi,j ∈ A.

3. CHANNEL ESTIMATION VIA COMPRESSED
SENSING

In this section, we present our channel estimation algorithm
that leverages the sparse channel structure at mmWave.

3.1. Frequency Selective Channel Model

Consider a geometric channel model [12, 18] for the fre-
quency selective mmWave channel consisting of L scattering
clusters. The dth delay tap of the channel can be expressed as

Hd =
L∑

`=1

α`prc(dTs − τ`)aR(φ`)a
∗
T(θ`), (4)

where prc(τ) denotes the raised cosine pulse signal evaluated
at τ , α` ∈ C is the complex gain of the `th cluster, τ` ∈ R is
the delay of the `th cluster, φ` and θ` are the angles of arrival
and departure (AoA/AoD), respectively of the `th cluster, and
aR(φ`) ∈ CNr×1 and aT(θ`) ∈ CNt×1 denote the antenna
array response vectors of the receiver and transmitter, respec-
tively.

The channel model in (4) can be written compactly as

Hd = AR∆dA
∗
T, (5)

where ∆d ∈ CL×L is diagonal with non-zero complex en-
tries, and AR ∈ CNr×L and AT ∈ CNt×L contain the
columns aR(φ`) and aT(θ`), respectively. Under this nota-
tion, vectorizing the channel matrix in (5) gives

vec(Hd) =
(
ĀT ◦AR

)

α1prc(dTs − τ1)
α2prc(dTs − τ2)

...
αLprc(dTs − τL)

 . (6)

The vector form of the channel in (6) is useful for the sparse
formulation that is presented next. Note that the `th column
of ĀT ◦AR is of the form āT(θ`)⊗ aR(φ`).

3.2. Sparse Formulation

We assume block transmission with zero padding (ZP) ap-
pended to each transmitted frame. To formulate the sparse
recovery problem, we assume single RF chains are used both
the transmitter and the receiver for the ease of exposition.
The formulation extends directly for multiple RF chains at the
transmitter and the receiver. We assume that for the training
stage the digital precoder and combiner are identity matrices.
Accordingly, for the mth training frame the transmitter uses
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an RF precoder f
(m)
RF that can be realized using quantized an-

gles at the analog phase shifters. The nth symbol of the mth
received frame is

rm[n] =

Nc−1∑
d=0

Hdf
(m)
RF sm[n− d] + vm[n], (7)

where sm[n] is the nth non-zero symbol of the mth training
frame

sm = [ 0 · · · 0︸ ︷︷ ︸
Nc−1

sm[1] · · · sm[N ] ] . (8)

At the receiver, an RF combiner w
(m)
RF is used during the mth

training phase, so that the post combining signal is
ym[1]
ym[2]

...
ym[N ]


T

= w
(m)
RF

∗ [
H0 · · · HNc−1

] (
ST
m ⊗ f

(m)
RF

)

+ e(m)T , (9)

where

Sm =


sm[1] 0 · · · 0
sm[2] sm[1] · · · .

...
...

. . .
...

sm[N ] · · · · · · sm[N −Nc + 1]

 .
The use of block transmission with Nc − 1 zero padding is
important here, since it allows for RF circuits reconfiguration
from one frame to the other. It also avoids loss of training data
during this reconfiguration and inter frame interference. Also
note that for the high symbol rates at mmWave (for example,
the chip rate used in IEEE 802.11ad preamble is 1760 MHz),
it is impractical to use different precoders and combiners for
different symbols. Vectorizing (9) gives

ym =

(
Sm ⊗ f

(m)
RF

T
⊗w

(m)
RF

∗
)

︸ ︷︷ ︸
Φm


vec(H0)
vec(H1)

...
vec(HNc−1)

+ em. (10)

To formulate the compressed sensing problem we first exploit
the sparse nature of the channel in the angular domain. As-
suming the AoAs and AoDs are drawn from an angle grid on
Gr and Gt, respectively and neglecting the grid quantization
error, we can then express (10) as

ym = Φm

(
INc
⊗ Ātx ⊗Arx

)
x̂ + em, (11)

where Atx and Arx are the dictionary matrices used for
sparse recovery. TheNt×Gt matrix Atx consists of columns
aT(θ̃x), with θ̃x drawn from a quantized angle grid of size

Gt, and the Nr×Gr matrix Arx consists of columns aR(φ̃x),
with φ̃x drawn from a quantized angle grid of size Gr. The
signal x̂ consists of the channel gains and pulse shaping filter
response, and is of size NcGrGt × 1.

Next, the band-limited nature of the sampled pulse shap-
ing filter is used to effectively operate with an unknown chan-
nel vector of lower sparsity level. Accordingly, we define the
sampled version of the pulse-shaping filter pd having entries
pd(n) = prc ((d− n)Ts), for d = 0, 1, · · · , Nc − 1 and
n = 1, 2, · · · , Gc. Neglecting the quantization error due to
sampling in the delay domain, we can then write (11) as

ym = Φm

(
INc
⊗ Ātx ⊗Arx

)
Γx + em, (12)

where Γ =


IGrGt

⊗ pT
0

IGrGt
⊗ pT

1
...

IGrGt ⊗ pT
Nc−1

 , (13)

and x is GcGrGt × 1 sparse vector containing the complex
channel gains.

Stacking M such measurements obtained from sending
M training frames using different RF precoder and combiner
for each frame, we have

y = ΦΨx + e, (14)

where y =
[
yT
1 ,y

T
2 , ...,y

T
M

]T ∈ CNM×1 is the measured
signal,

Φ =


S1 ⊗ f

(1)
RF

T
⊗w

(1)
RF

∗

S2 ⊗ f
(2)
RF

T
⊗w

(2)
RF

∗

...

SM ⊗ f
(M)
RF

T
⊗w

(M)
RF

∗

 ∈ CNM×NcNrNt (15)

is the measurement matrix, and

Ψ =
(
INc ⊗ Ātx ⊗Arx

)
Γ (16)

=


(
Ātx ⊗Arx

)
⊗ pT

0(
Ātx ⊗Arx

)
⊗ pT

1
...(

Ātx ⊗Arx

)
⊗ pT

Nc−1

 ∈ CNcNrNt×GcGrGt (17)

is the dictionary. Note that the size of the dictionary dictates
the complexity of the sparse recovery algorithm and is inde-
pendent of M .

AoA/AoD estimation With the sparse formulation of the
mmWave channel estimation problem in (14), compressed
sensing tools can be first used to estimate the AoA and AoD.
Note that we can increase or decrease Gr, Gt and Gc to meet
the required level of sparsity. As the sensing matrix is known
at the receiver, sparse recovery algorithms can be used to esti-
mate the AoA and AoD. Following this, the channel gains can
be estimated to minimize the mean squared error or via least
squares by plugging in the columns of the dictionary matrices
corresponding to the estimated AoA and AoD.
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Fig. 2. Normalized mean squared error (NMSE) as a function
of SNR for different training lengthM whenNRF = 1. Using
the proposed approach, training length of 80−100 is sufficient
to ensure very low estimation error

4. SIMULATION RESULTS

In this section, the performance of the proposed channel es-
timation algorithm is provided for the single-user scenario.
We consider a system with Nt = 32 transmitter antennas
and Nr = 32 receiver antennas for illustration. Uniform
linear arrays with half wavelength separation are assumed.
The AoA and AoD quantization used for construction of the
transmitter and receiver dictionary matrices are taken to be
Gr = 64 and Gt = 64. The angle quantization used in
the phase shifters is assumed to have NQ = 2 quantization
bits so that the entries of the RF precoders and combiners are
drawn from {1, − 1, j, − j} with equal probability. The
frame length is assumed to be N = 16 and the tap length
of the frequency selective channel is assumed to be uniform
Nc = 4 for illustration. The scattering cluster centers are
assumed to be independently and uniformly distributed with
delay τ` ∈ [0, (Nc − 1)Ts], and angles φ` and θ` from (0, π).
The raised cosine pulse shaping signal is assumed to have a
roll-off factor of 0.8.

Fig. 2 shows the normalized mean squared error (NMSE)
of the channel estimates as a function of the post combining
received signal SNR. Here we define NMSE as

NMSE =

∑Nc

d=0 ||Hd − Ĥd||2F∑Nc

d=0 ||Hd||2F
(18)

for comparing the effectiveness of our proposed channel esti-
mation algorithm. From Fig. 2, it can be seen that with train-
ing length of even 80 − 100 frames, sufficiently low channel
estimation error can be ensured. Increasing the training length
M leads to smaller NMSE, while the size of the dictionary in
this setup is a constant 4096× 32768, independent of M . For
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Fig. 3. Achievable spectral efficiency for SNR = 0 dB and
Ns = 1, as a function of the number of training steps M for
different numbers of RF chains NRF used at the transceivers.

comparing the impact of angle quantization error, we show
the NMSE for the case when the AoAs/AoDs are drawn from
quantized grids and also the case when the AoAs/AoDs are
unrestricted. Choosing larger values for Gr (Gt) in compar-
ison with Nr (Nt) can further narrow the error gap between
the two cases. More elaborate plots showing the performance
gains with different dictionary sizes and complexity are pro-
vided in the extended version of this paper [19].

Fig. 3 shows the achievable rates using the channel esti-
mates, for different number of RF chains at the transceivers.
In Fig. 3, we compute rates as in [18], without water fill-
ing. The improvement in rate performance, even with smaller
training steps occurs thanks to a larger number of effective
measurements per training sent, that scales with the number
of RF combiners NRF at the receiver. Similarly, employing
multiple RF chains at the transmitter contributes to a larger
set of random precoders, resulting in smaller estimation error
via compressed sensing. So, a larger NRF is preferred to de-
crease the training overhead and to fully leverage the hybrid
architecture in wideband mmWave systems.

5. CONCLUSION

In this paper, we proposed a time-domain channel estimation
algorithm for frequency selective mmWave systems using hy-
brid architecture at the transmitter and receiver. The proposed
channel training protocol can be used to support single-carrier
MIMO operation in systems like IEEE 802.11ad, since the en-
tire channel is estimated after the beam training phase. Sim-
ulation results showed that the proposed algorithm required
very few training frames to ensure low estimation error, and
further reduction can be obtained by using multiple RF chains
at the transmitter and the receiver.
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