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ABSTRACT
The high hardware complexity of a massive mimo base station, which
requires hundreds of radio chains, makes it challenging to build com-
mercially. One way to reduce the hardware complexity and power
consumption of the receiver is to lower the resolution of the analog-to-
digital converters (adcs). We derive an achievable rate for a massive
mimo system with arbitrary quantization and use this rate to show
that adcs with as low as 3 bits can be used without significant perfor-
mance loss at spectral efficiencies around 3.5 bpcu per user, also under
interference from stronger transmitters and with some imperfections
in the automatic gain control.

Index Terms— adc, channel estimation, low resolution, massive
mimo, quantization.

1. INTRODUCTION

Massive mimo is a promising technology for the improvement of
today’s wireless infrastructure [1]. The huge number of transceiver
chains required in massive mimo base stations, however, makes their
hardware complexity and cost a challenge that has to be overcome
before the technology can become commercially viable [2]. It has
been proposed to build each transceiver chain from low-end hardware
to reduce the complexity [3].

In this paper, we perform an information theoretical analysis of a
massive mimo system with arbitrary adcs and derive an achievable
rate, which takes quantization into account, for a linear combiner that
uses low-complexity channel estimation. The achievable rate is used
to draw the conclusion that adcs with 3 bits are sufficient to achieve
a rate close to that of an unquantized system, see Section 6 for more
detailed conclusions. This analysis is an extension of work in [4],
where we only study one-bit adcs.

Previous work has studied the capacity of the one-bit quantized
frequency-flat mimo channel [5, 6], developed detection and channel
estimation methods for the frequency-flat multiuser mimo channel
[7–9] and for the frequency-selective channel [10,11]. Low-resolution
adcs were studied in [12] and the use of a mix of adcs with different
resolutions in [13]. While the methods for frequency-flat channels are
hard to extend to frequency-selective channels and the methods for
frequency-selective channels either have high computational complex-
ity, require long pilot sequences or imply impractical design changes
to the massive mimo base station, the linear detector and channel
estimator that we study is the same low-complexity methods that has
been proven possible to implement in practical testbeds [14, 15].

A parametric model for hardware imperfections was proposed
in [16], where the use of low-resolution adcs in massive mimo also
was suggested. The parametric model is used in [17] to show that
4–5 bits of resolution maximizes the spectral efficiency for a given
power consumption. Several system simulations have been performed

to analyze low-resolution adcs, e.g. [18, 19], where the conclusions
coincide with the conclusions in this paper: that three-bit adcs are
sufficient to obtain a performance close to an unquantized system.

2. SYSTEM MODEL

The uplink transmission from 𝐾 single-antenna users to a massive
mimo base station with 𝑀 antennas is studied. The transmission is
based on pulse-amplitude modulation and, for the reception, a matched
filter is used for demodulation. It is assumed that the matched filter
is implemented as an analog filter and that its output is sampled at
symbol rate by an adc with finite resolution. Because the nonlinear
quantization of the adc comes after the matched filter, the transmis-
sion can be studied in symbol-sampled discrete time.

Each user 𝑘 transmits the signal √𝑃u�𝑥u�[𝑛], which is normalized,

E[|𝑥u�[𝑛]|2] = 1, (1)

so that 𝑃u� denotes the transmit power. The channel from user 𝑘 to
antenna 𝑚 at the base station is described by its impulse response
√𝛽u�ℎu�u�[ℓ], which can be factorized into a large-scale fading coeffi-
cient 𝛽u� and a small-scale fading impulse response ℎu�u�[ℓ]. The
large-scale fading varies slowly in comparison to the symbol rate and
it is assumed that it can be accurately estimated with little overhead
by both user and base station. How the large-scale fading is estimated
with low-resolution adcs is left for future research. It is therefore
assumed to be known throughout the system. The small-scale fading,
in contrast, is a priori unknown to everybody. It is independent across
ℓ and follows the power delay profile

𝜎2
u�[ℓ] ≜ E [|ℎu�u�[ℓ]|2] , (2)

however, is assumed to be known. It is also assumed that 𝜎2
u�[ℓ] = 0 for

all taps ℓ ∉ [0, … , 𝐿−1], where 𝐿 is the number of nonzero channel
taps. Since variations in received power should be described by the
large-scale fading only, the power delay profile is normalized such
that

u�−1
∑
ℓ=0

𝜎2
u�[ℓ] = 1, ∀𝑘. (3)

Base station antenna 𝑚 receives the signal

𝑦u�[𝑛] =
u�

∑
u�=1

√𝛽u�𝑃u�

u�−1
∑
ℓ=0

ℎu�u�[ℓ]𝑥u�[𝑛 − ℓ] + 𝑧u�[𝑛]. (4)

The thermal noise of the receiver 𝑧u�[𝑛] is modeled as a white stochas-
tic process, for which 𝑧u�[𝑛] ∼ 𝒞𝒩(0, 𝑁0). The received power is
denoted

𝑃rx ≜ E [|𝑦u�[𝑛]|2] =
u�

∑
u�=1

𝛽u�𝑃u� + 𝑁0. (5)
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Transmission is assumed to be done with a cyclic prefix in blocks
of 𝑁 symbols. The received signal can than be given in the frequency
domain as

𝘺u�[𝜈] ≜ 1
√𝑁

u�−1
∑
u�=0

𝑦u�[𝑛]𝑒−u�2u�u�u�/u� =
u�

∑
u�=1

𝘩u�u�[𝜈]𝘹u�[𝜈] + 𝘻u�[𝜈],
(6)

The Fourier transforms 𝘹u�[𝜈] and 𝘻u�[𝜈] of the transmit signal 𝑥u�[𝑛]
and noise 𝑧u�[𝑛] are defined in the same way as 𝘺u�[𝜈]. The frequency
response of the channel is defined as

𝘩u�u�[𝜈] ≜
u�−1
∑
ℓ=0

ℎu�u�[ℓ]𝑒−u�2u�ℓu�/u� . (7)

3. QUANTIZATION

The inphase and quadrature signals are assumed to be quantized sepa-
rately by two identical adcs with quantization levels given by 𝒬ℜ𝔢 ⊆
ℝ. The set of quantization points is denoted 𝒬 ≜ {𝑎+𝑗𝑏 ∶ 𝑎, 𝑏 ∈ 𝒬ℜ𝔢}
and the quantization by

[𝑦]𝒬 ≜ arg min
u�∈𝒬

∣𝑦 − 𝑞∣ . (8)

To adjust the input signal to the dynamic range of the adc, an auto-
matic gain control scales the input power by 𝐴. The adc outputs:

𝑞u�[𝑛] ≜ [√𝐴𝑦u�[𝑛]]
𝒬

. (9)

Using the orthogonality principle, any signal with finite power can
be partitioned into one part 𝜌𝑦u�[𝑛] that is correlated to the transmit
signal and one part 𝑒u�[𝑛] that is uncorrelated:

𝑞u�[𝑛] = 𝜌𝑦u�[𝑛] + 𝑒u�[𝑛]. (10)

The constant 𝜌 and the variance of the uncorrelated part are given by:

𝜌 =
E [𝑞u�[𝑛]𝑦∗

u�[𝑛]]
E [|𝑦u�[𝑛]|2]

, (11)

E [|𝑒u�[𝑛]|2] = E [|𝑞u�[𝑛]|2] −
∣E [𝑞u�[𝑛]𝑦∗

u�[𝑛]]∣
2

E [|𝑦u�[𝑛]|2]
. (12)

The normalized mean-square error (mse) of the quantization is de-
noted by:

𝑄 ≜ 1
|𝜌|2

E [|𝑒u�[𝑛]|2] (13)

= 𝑃rx
⎛⎜⎜⎜
⎝

E [|𝑞u�[𝑛]|2]E [|𝑦u�[𝑛]|2]

∣E [𝑞u�[𝑛]𝑦∗
u�[𝑛]]∣

2 − 1
⎞⎟⎟⎟
⎠

. (14)

An adc with 𝑏-bit resolution has |𝒬ℜ𝔢| = 2u� quantization levels.
In [20], the quantization levels that minimize the mse for a Gaussian
input signal with unit variance are derived numerically for 1–5 bit
adcs, both with arbitrarily and uniformly spaced quantization levels.
The normalized mse of the quantization has been computed numeri-
cally and is given in Table 1 for the optimized quantizers. To obtain
the mse in Table 1 with the quantization levels from [20], the input
should be a unit-variance Gaussian signal and the automatic gain
control 𝐴 = 𝐴⋆ ≜ 1/𝑃rx. Figure 1 shows how the quantization mse in
a four-bit adc changes with imperfect gain control. Even if the gain
control varies between −8 and 5 dB from the optimal value, the mse
is still better than that of a three-bit adc.

Table 1: Normalized quantization mean square-error 𝑄/𝑃rx
resolution u� 1 2 3 4 5
optimal levels 0.5708 0.1331 0.03576 0.009573 0.002492
uniform levels 0.5708 0.1349 0.03889 0.01166 0.003506
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Fig. 1: Quantization mse for optimal four-bit adc with imperfect agc.

4. CHANNEL ESTIMATION

Channel estimation is done by receiving 𝑁 = 𝑁p-symbol long orthog-
onal pilots from the users, i.e., pilots 𝑥u�[𝑛] such that:

u�p−1

∑
u�=0

𝑥u�[𝑛]𝑥∗
u�′[𝑛 + ℓ] =

⎧{
⎨{⎩

𝑁p, if 𝑘 = 𝑘′, ℓ = 0
0, if 𝑘 ≠ 𝑘′, ℓ = 1, … , 𝐿 − 1

, (15)

where the indices are taken modulo 𝑁p. To fulfill (15), 𝑁p ≥ 𝐾𝐿. We
will call the factor of extra pilots 𝜇 ≜ 𝑁p/(𝐾𝐿) the pilot excess factor.
As remarked upon in [4], not all sequences fulfilling (15) result in the
same performance. Here we use the pilots proposed in [4]. Using (10)
and (15), an observation of the channel is obtained by correlation:

𝑟u�u�[ℓ] = 1

𝜌√𝑁p

u�p−1

∑
u�=0

𝑞u�[𝑛]𝑥∗
u�[𝑛 + ℓ] (16)

= √𝛽u�𝑃u�𝑁pℎu�u�[ℓ] + 𝑒′
u�u�[ℓ] + 𝑧′

u�u�[ℓ], (17)

where

𝑒′
u�u�[ℓ] ≜ 1

𝜌√𝑁p

u�p−1

∑
u�=0

𝑒u�[𝑛]𝑥∗
u�[𝑛 + ℓ], (18)

𝑧′
u�u�[ℓ] ≜ 1

√𝑁p

u�p−1

∑
u�=0

𝑧u�[𝑛]𝑥∗
u�[𝑛 + ℓ] ∼ 𝒞𝒩 (0, 𝑁0) . (19)

The linear minimum mse estimate of the frequency response of
the channel is thus

�̂�u�u�[𝜈] =
u�−1
∑
ℓ=0

√𝛽u�𝑃u�𝑁p𝜎2
u�[ℓ]

𝛽u�𝑃u�𝑁p𝜎2
u�[ℓ] + 𝑄 + 𝑁0

𝑟u�u�[ℓ]𝑒−u�2u�ℓu�/u� (20)

and the error 𝜖u�u�[𝜈] ≜ �̂�u�u�[𝜈] − 𝘩u�u�[𝜈] has the variance 1 − 𝑐u�,
where the variance of the channel estimate is given by

𝑐u� ≜ E [|�̂�u�u�[𝜈]|2] =
u�−1
∑
ℓ=0

𝜎4
u�[ℓ]𝛽u�𝑃u�𝑁p

𝜎2
u�[ℓ]𝛽u�𝑃u�𝑁p + 𝑄 + 𝑁0

. (21)

Figure 2 shows the variance of the channel estimate. A resolution of
2 bit is enough to obtain a channel estimate that is only 0.5 dB worse
than in an unquantized system. With a resolution of 3 bit or higher,
the variance of the channel estimate is practically the same as that
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Fig. 2: The quality of the channel estimate with 5 users and a uniform
power delay profile 𝜎2

u�[ℓ] = 1/𝐿, for all 𝑘, ℓ, and with equal received
power 𝛽u�𝑃u� = 𝛽1𝑃1 from all users 𝑘. The optimal quantization levels
derived in [20] are used. The markers show how simulated results
with 𝐿 = 20 channel taps corroborate the theory. When 𝑐u� = 0 dB,
perfect channel state information is obtained.

of the unquantized system. Increasing the pilot length, increases the
quality of the channel estimation in all systems. The improvement is,
however, the largest when going from 𝜇 = 1 to 𝜇 = 2; thereafter the
improvement gets smaller.

5. DATA TRANSMISSION

The uplink data is transmitted in a block of length 𝑁 = 𝑁u, which
is separated from the pilot block in time. The received signal is
processed in a linear combiner and an estimate of the transmitted
signal is obtained by

̂𝘹u�[𝜈] = 1
𝜌

u�
∑
u�=1

𝘸u�u�[𝜈]𝘲u�[𝜈], (22)

where the Fourier transform 𝘲u�[𝜈] of 𝑞u�[𝑛] is defined in the same
way as 𝘺u�[𝜈] in (6) and the combiner weights 𝘸u�u�[𝜈] are chosen as
a function of the channel estimate. For example, the maximum-ratio
and zero-forcing combiners can be used, see [4].

If we code over many channel realizations, an achievable ergodic
rate, i.e. lower bound on the channel capacity, is given by [4], inde-
pendent of 𝜈:

𝑅u� = log2
⎛⎜⎜
⎝

1 +
∣E [ ̂𝘹∗

u�[𝜈]𝘹u�[𝜈]]∣2

E [| ̂𝘹u�[𝜈]|2] − ∣E [ ̂𝘹∗
u�[𝜈]𝘹u�[𝜈]]∣2

⎞⎟⎟
⎠

. (23)

To compute the expected values in (23), the estimate of the transmit
signal in (22) can be expanded by using the relation in (10) and writing

the channel as 𝘩u�u�[𝜈] = �̂�u�u�[𝜈] − 𝜖u�u�[𝜈]:

̂𝘹u�[𝜈] = 𝘹u�[𝜈]√𝛽u�𝑃u�

u�
∑
u�=1

E [𝘸u�u�[𝜈]�̂�u�u�[𝜈]]

+ 𝘹u�[𝜈]√𝛽u�𝑃u�

u�
∑
u�=1

(𝘸u�u�[𝜈]�̂�u�u�[𝜈] − E [𝘸u�u�[𝜈]�̂�u�u�[𝜈]])

+ ∑
u�′≠u�

𝘹u�′[𝜈]√𝛽u�′𝑃u�′

u�
∑
u�=1

𝘸u�u�[𝜈]�̂�u�u�′[𝜈]

−
u�

∑
u�′=1

𝘹u�′[𝜈]√𝛽u�′𝑃u�′

u�
∑
u�=1

𝘸u�u�[𝜈]𝜖u�u�[𝜈]

+
u�
∑
u�=1

𝘸u�u�[𝜈]𝘻u�[𝜈] + 1
𝜌

u�
∑
u�=1

𝘸u�u�[𝜈]𝘦u�[𝜈], (24)

where the Fourier transform 𝘦u�[𝜈] of 𝑒u�[𝑛] is defined as in (6). Note
that only the first term is correlated to the desired signal. By assuming
that the channel is i.i.d. Rayleigh fading, it can be shown that the
other terms in (24)—channel gain uncertainty, interference, channel
estimation error, thermal noise, quantization error—are mutually
uncorrelated and the variance of each term can be evaluated. In [4],
it is shown, for one-bit adcs, that, in limit, the last term does not
combine coherently and its variance equals

E ⎡⎢
⎣
∣ 1
𝜌

u�
∑
u�=1

𝘸u�u�[𝜈]𝘦u�[𝜈]∣
2
⎤⎥
⎦

→ 𝑄, 𝐿 → ∞, (25)

if the combiner is normalized such that ∑u�
u�=1 E [∣𝘸u�u�[𝜈]∣2] = 1,

which will be assumed here. This can be generalized to any quantiza-
tion in a similar way. The rate in (23) can then be written as

𝑅u� → log2
⎛⎜
⎝

1 + 𝛽u�𝑃u�𝑐u�𝐺
∑u�

u�′=1 𝛽u�′𝑃u�′(1 − 𝑐u�′(1 − 𝐼)) + 𝑄 + 𝑁0

⎞⎟
⎠

, (26)

as 𝐿 → ∞, where the array gain and interference terms are defined as

𝐺 ≜ ∣
u�
∑
u�=1

E [𝘸u�u�[𝜈]�̂�u�u�[𝜈]]∣
2

, (27)

𝐼 ≜ Var (
u�
∑
u�=1

𝘸u�u�[𝜈]�̂�u�u�′[𝜈]), (28)

where

𝐺 =
⎧{
⎨{⎩

𝑀
𝑀 − 𝐾

, 𝐼 =
⎧{
⎨{⎩

1, for maximum-ratio combining
0, for zero-forcing combining

. (29)

Only the quantization error in (25) depends on the number of channel
taps 𝐿. In the unquantized case, 𝑅u� thus does not depend on 𝐿. In
other cases, the dependency on 𝐿 vanishes as 𝐿 → ∞ and the energy
of the received signal no longer depends on the energy of the detected
symbol [4, Lemmata 1, 3]; this argument is valid for any quantizer.

The dependency on 𝐿 quickly becomes negligible, and the limit in
(26) can approximate the rate with negligible error, also for practical
delay spreads 𝐿. The approximation can even be good for some
frequency-flat channels (𝐿 = 1) when the received power ∑u�

u�=1 𝛽u�𝑃u�
is small relative to the noise power 𝑁0 or when the number of users is
large and there is no dominant user, i.e., no user 𝑘 for which 𝛽u�𝑃u� ≫
∑u�′≠u� 𝛽u�′𝑃u�′. For general frequency-flat channels, however, it is not
true that the variance of the quantization error vanishes with increasing
number of antennas, as it does in the limit 𝐿 → ∞ in (26); this seems
to be overlooked in some of the literature [21–24].

The rate 𝑅u� is plotted in Figure 3 for maximum-ratio and zero-
forcing combining. The transmit powers are allocated proportionally
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(a) Maximum-ratio combining

−10 −5 0 5 10

2

4

6

8
𝜇 = 1

snr 𝛽u�𝑃u�/𝑁0 [dB]

ac
hi

ev
ab

le
ra

te
𝑅 u�

[b
pc

u]
five-bit adcs
four-bit adcs
three-bit adcs
two-bit adcs
one-bit adcs

(b) Zero-forcing combining
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Fig. 3: Rate of a system with 100 antennas and 10 users, where the
power is proportional to 1/𝛽u� and training is done with 𝑁p = 𝐾𝐿
pilots. The channel is i.i.d. Rayleigh fading with uniform power
delay profile ℎu�u�[ℓ] ∼ 𝒞𝒩(0, 1/𝐿). The optimal quantization levels
derived in [20] are used.

to 1/𝛽u� and channel estimation is done with 𝑁p = 𝐾𝐿 pilots, i.e., the
pilot excess factor 𝜇 = 1. It can be seen that low-resolution adcs
cause very little performance degradation at spectral efficiencies be-
low 4 bpcu. One-bit adcs deliver approximately 40 % lower rates than
the equivalent unquantized system and the performance degradation
becomes practically negligible with adcs with as few as 3 bit resolu-
tion. Assuming that the power dissipation in an adc is proportional to
2u�, the use of one-bit adcs thus reduces the adc power consumption
by approximately 6 dB at the price of 40 % performance degradation
compared to the use of three-bit adcs, which deliver almost all the
performance of an unquantized system.

In [18], it is pointed out that low-resolution adcs create a near–far
problem, where users with relatively weak received power drown in the
interference from stronger users. This is illustrated with a zero-forcing
combiner in Figure 4, where it can be seen how the performance of
the weak users degrades if there is a stronger user in the system. Note
that the performance degrades also in the unquantized system, where
the imperfect channel estimates prevent perfect suppression of the
interference from the strong user. In the quantized systems, there is a
second cause of the performance degradation: With quantization, the
pilots are no longer perfectly orthogonal and the quality of the channel
estimates is negatively affected by interference from the strong user.
This effect can be seen in (21), where 𝑄 scales with the received power
𝑃rx and thus with the power of the interferer.

Figure 4, however, shows that the near–far problem does not
become prominent until the received power from the strong user is
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Fig. 4: Per-user rate 𝑅u� for users 𝑘 = 2, … , 𝐾 when user 𝑘 = 1 has a
different receive snr. The system has 100 antennas and 𝐾 = 10 users,
the channel is i.i.d. Rayleigh with uniform power delay profile and
is estimated with 𝑁p = 𝐾𝐿 pilots. The optimal quantization levels
derived in [20] are used.

around 10 dB higher than that of the weak users, where the data rate
is degraded by approximately 15 % in the unquantized system. The
degradation is larger in the quantized systems but the additional degra-
dation due to quantization is almost negligible when the resolution is
3 bits or higher. With one-bit adcs and one strong user with 10 dB
larger received power, the degradation of the data rate increases to al-
most 50 %. Proper power control among users, however, can eliminate
the near–far problem altogether.

6. CONCLUSION

We have derived an achievable rate for a single-cell massive mimo
system that takes quantization into account. The derived rate shows
that adcs with as low resolution as 3 bits can be used with negligi-
ble performance loss compared to an unquantized system, also with
interference from stronger users. For example, with three-bit adcs,
the data rate is decreased by 4 % at spectral efficiencies of 3.5 bpcu in
a system with 100 antennas that serves 10 users. It also shows that
four-bit adcs can be used to accommodate for imperfect automatic
gain control—imperfections up to 5 dB still result in better perfor-
mance than the three-bit adcs. One-bit adcs can be built from a
single comparator and do not need a complex gain control (which
adcs with more than one-bit resolution need), which simplifies the
hardware design of the base station receiver and reduce its power
consumption. The derived rate, however, shows that one-bit adcs
lead to a significant rate reduction. For example, one-bit adcs lead
to a 40 % rate reduction in a system with 100 antennas that serves
10 users at spectral efficiencies of 3.5 bpcu. In the light of the good
performance of three-bit adcs, whose power consumption should
already be small in comparison to other hardware components, the
primary reason for the use of one-bit adcs would be the simplified
hardware design, not the lower power consumption.
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