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ABSTRACT

Linear precoders have been shown to perform reasonably well
at low SNR when the basestation of a MIMO downlink em-
ploys one-bit digital-to-analog converters to quantize the pre-
coder outputs. However, at medium-to-high SNRs, an error
floor is encountered due to the coarse quantization. This pa-
per examines methods for slightly perturbing the transmitted
signal prior to quantization in an effort to improve downlink
performance at higher SNRs. The perturbation is performed
with the goal of minimizing the worst-case probability of er-
ror among the user terminals, and assumes that the symbols
to be transmitted are drawn from a finite alphabet constella-
tion. Two different types of perturbations are studied, and it
is found via simulation that the methods can provide dramatic
gains in downlink performance.

Index Terms— one-bit quantization, massive MIMO, lin-
ear precoding, perturbation precoding, minimum probability
of error precoding

1. INTRODUCTION

The use of one-bit quantization has been proposed to reduce
the cost, complexity and energy consumption associated with
massive MIMO systems. Rather than reducing the number
of RF chains and decreasing beamforming flexibility as in
hybrid digital-analog approaches [1]-[6], one-bit quantization
maintains one RF chain per antenna and reduces the cost per
RF chain by replacing each high-precision analog-to-digital
converter (ADC) or digital-to-analog converter (DAC) with a
simple one-bit implementation. The savings are considerable
since energy consumption and cost associated with the ADCs
and DACs grow exponentially with the number of quantiza-
tion bits, and other RF components can be simplified as well.
This is especially important for the downlink, where a one-bit
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DAC obviates the need for linear amplifiers operating with a
high back-off and hence low energy efficiency.

Most research on one-bit quantization for MIMO systems
has focused on the uplink (e.g., see [7]-[12]). The downlink
case, with one-bit DACs implemented on each RF chain, has
received considerably less attention [13, 14, 15, 16]. The im-
pact of one-bit quantization on the performance of linear pre-
coding was studied in [15], and it was shown that the signal-
to-quantization-and-interference ratio at the receivers grows
approximately linearly with the ratio of the number of anten-
nas to the number of users. Using one-bit DACs at the trans-
mitter is equivalent to restricting the transmitted signal from
each antenna to be QPSK. This observation was exploited in
[16] to directly design the transmitted signal for each pos-
sible combination of symbols desired at the user terminals.
Rather than using a linear precoder, a nonlinear minimum
probability-of-error criterion was used to directly determine
the QPSK symbols for each antenna.

A key observation in much of the work for both the uplink
and downlink is that at low signal-to-noise ratio (SNR), the
loss in performance due to one-bit quantization is relatively
small, only about 2dB (a factor of 2/7) in most cases. This is
encouraging since the low SNR regime is a likely operating
point for massive MIMO systems that take advantage of array
or beamforming gain to make up for low signal power. How-
ever, it is still of interest to study methods that minimize the
impact of one-bit quantization for medium and higher SNRs.

In this paper we focus on making linear precoding meth-
ods more effective in conjunction with one-bit quantization
by perturbing the linearly precoded signal to favorably im-
pact the probability of decoding error at the user terminals.
We assume that the basestation is transmitting symbols drawn
from a finite alphabet, and hence that each user needs only
to make a correct detection of its symbol rather than receive
something “close” to the symbol itself. With channel state
information available at the transmitter, we can determine in
advance the effect of the one-bit quantization at each user, and
thus we choose an appropriate perturbation that increases the
minimum distance to a decision boundary over all the users.
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Instead of searching for an optimal perturbation which would
be prohibitively expensive, we show via simulation that mak-
ing a relatively small and fixed number of perturbations to
improve the performance of the worst-case user can lead to a
significant improvement in overall system performance.

The next section introduces the data model assumed in
the paper and the minimum symbol error probability criterion
that we will use to update the perturbation for the transmitted
symbol. Section 3 presents the perturbation methods consid-
ered in this work and how they are computed, and then sim-
ulation results are given in Section 4 to illustrate the perfor-
mance gains compared with a transmitter with full-precision
quantization and one with no perturbation.

2. QUANTIZED LINEAR PRECODING

2.1. Data Model and Assumptions

To illustrate the basic idea of our approach, we assume a flat
fading downlink channel involving an M -antenna basestation
(BS) and K single antenna user terminals. We will focus on
a massive MIMO scenario in which M > K, although this
is not strictly necessary for the proposed methods. We make
no assumptions regarding the K x M channel matrix H other
than it is generically full rank. We let the M -element vector x
represent the transmitted signal at the BS, so that the downlink
data model can be represented as

f=Hx+n, ey

where the k-th element of r, denoted by 7, represents the
signal received by user &, and n is a vector whose K elements
are independent identically distributed (i.i.d.) Gaussian noise.
We will denote r = Hx as the noise-free version of r, and we
will let Hy,, denote the element of H in row £ and column
m.

In [15], it is assumed that the vector x is the one-bit quan-
tized output of a linear precoder:

x=Q(Ps), ©))

where s is the desired K -vector of symbols to be decoded at
the users, P is an M x K precoder, and the one-bit quantizer
Q(+) operates element-wise on its argument:

Q@),, = % (sign(Re{zm}) + jsign(Im{z}) .

where sign(+) returns the sign of the argument, and Re{-} and
Im{-} represent the real and imaginary parts of their argu-
ments, respectively. As explained below, in our approach we
will perturb the signal in (2) in order to improve the proba-
bility of correctly detecting s at the user terminals. We will
focus on perturbed versions of the maximal ratio transmission
(MRT) scheme in which P = H¥, and the zero-forcing (ZF)

precoder where P = H (HHH )71. In order to focus on

the impact of the one-bit quantization, we assume in this pa-
per that the channel matrix H is known at the transmitter. In
practice the channel will be subject to estimation errors that
will lead to degraded detection performance.

2.2. Minimum Probability of Error Precoding

We assume that the symbols that the BS desires to send to the
users are drawn from a finite alphabet with defined symbol
decision boundaries. Each user compares its received signal
7, with these decision boundaries and takes the closest ele-
ment of the alphabet 55 as the symbol that was transmitted
to it. As such, it is often not necessary that 7, be “close” to
sk in any sense, just that r; lie somewhere within the deci-
sion region associated with the desired symbol s. In fact, for
some constellations (e.g., PSK), a lower probability of error
is obtained when r; moves farther away from s such that its
distance to the decision boundaries is larger.

For example, consider the case of QPSK symbols de-
picted in Figure 1. In this figure, the desired symbol for user
k is 1 4 j in the upper-right quadrant, but any received signal
7k that lies in the upper-right quadrant will be decoded as
the correct si, and the farther the received signal from the
decision boundary, the lower the error probability. Received
signals outside the correct quadrant have a positive distance to
the boundary indicated by the lines with arrows, those inside
the quadrant have a negative distance. While this distance is
specific to a single user, its value will not only depend on sy,
but also on the channel and and on the transmitted signal x,
which in turn will depend on the other symbols s. Thus, we
will let the function dy (x|s, H), more concisely dy, represent
the distance of 7, to the nearest decision boundary for user k.
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Fig. 1. Distance metric for minimizing probability of decod-
ing error for symbol sy; the distance is shown for several pos-
sible received signals 7.

As discussed in [16], there are several ways to aggre-
gate these distances to provide a single figure of merit for the
downlink. These include minimizing the sum ) ., dj, prod-
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uct [ [, di, or (as we focus on in this paper) minimizing the
maximum distance over all users:

X = arg min max di(x|s, H) . 3)

Solving (3) over all 4™ possible x is prohibitively expensive,
so in this paper we focus on choosing x to be a perturbed
version of a quantized linear precoder. We will consider the
two general classes of perturbations outlined below.

Direct Perturbation (DP)—Here we choose x = Q(Ps)+
€, where € is an M-element perturbation vector that must be
constrained such that the elements of x are restricted to be
41 =+ j. The idea is that by changing the symbols transmitted
by a small number of the antennas, received signals near de-
cision boundaries can be made more robust without affecting
decisions made by other users.

Symbol Perturbation (SP) — In this case, the perturbation
is made to the symbols: x = Q(P(s + €)), to reflect the idea
that it is not necessary to force recovery of the exact symbols
s, just received signals within the correct decision regions. A
small perturbation to one of the user symbols can help move
the received signal for another user deeper into the decision
region.

3. PERTURBATION PRECODING

In this section we present the details of the two approaches
mentioned above. Even though these approaches work with a
constrained set of possible values for x, for large M it is still
unlikely that an optimization such as (3) can be implemented
over all possible perturbations €. Furthermore, the quanti-
zation non-linearity makes implementation of gradient-based
methods problematic. Instead, we will show that simply con-
sidering a small constrained set of € can yield a significant
benefit rather than optimizing over all possible values of e.

3.1. Direct Perturbation Precoding

The DP approach takes an initial quantized transmit vector x
and strategically perturbs its elements to improve the perfor-
mance of the worst-case user. The algorithm operates at each
step by finding the user with the maximum distance dy,, and
then finding the element of x that makes the largest contribu-
tion to dj,. Since

M
TR = E HymTp, ,
m=1

the “worst” element of x from the point of view of user
k is the one for which Hy,,x,, is the farthest from the
decision boundary, or in other words the one for which
di(Tm|Sk, Him) is largest. This element of x is thus ad-
justed to one of the other three possible QPSK symbols if that
leads to a reduction in the distance for that user; otherwise it

remains unchanged. This process is repeated a fixed number
of times, with only one perturbation allowed per element of
x. Mathematically, the implementation of the algorithm can
be described as follows:

1. Initialize p = 0, number of perturbations N, the index
set M = () and find an initial x(©) using (2) for some
linear precoder P.

2. Find k) = arg max;, dj,(x()|s, H)

3. Find m?) = arg max,,¢ m dio) (T Sk, Hom)

4. Add m® to M

5. Set element m(®) of x(P) equal to the value +1 + j that
minimizes maxy, dy, (x()|s, H)

6. p—>p+1

7. if p = N, setx = x(P) and end; otherwise return to
step 2.

Since it is relatively simple to update dj(x")|s, H) when
only one element of x(P) has changed, for large M most of
the computational burden comes in step 3, where M separate
values have to be checked for the worst-case contribution to
T, . The complexity of the algorithm can be controlled by
choosing the maximum number of potential perturbations N,
that are allowed.

3.2. Symbol Perturbation Precoding

Instead of directly perturbing the elements of x, the SP ap-
proach perturbs the values of the K symbols s that are used
in the linear precoder. Also, rather than perturbing the sym-
bols one at a time as we did with x, we choose a set of ran-
dom perturbations {€,,p = 1,---,N,}, and then select the
€, that results in the smallest value for dj. There are a num-
ber of possible perturbations that can be used; we have found
that the following works well:

ex = c(ug + jug) , %)

where c is a constant gain and uy, and vy are uniform random
variables on [0, 1]. The details of the algorithm are given in
the following steps:

1. Initialize p = 1, the “size” c of the perturbation, the
number of perturbations V,,, and find an initial x(0) ys-
ing (2) for some linear precoder P. Calculate §(0) =
maxy, dy, (x(V s, H).

. Generate €P) according to (4).

. Calculate x?) = Q (P(s + €®)))

. Calculate §(p) = maxy, dj,(x®)|s, H)

.p—>p+1

. if p < N, return to step 2.

7. Find p* = arg min,, §(p) and set x = x(").

AN B WD

While this method eliminates the search over M elements for
each p, it requires the computation of P(s + €()) and Hx(®)
for each perturbation. Again, the computational load can be
controlled by the choice of N,,.
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4. NUMERICAL RESULTS

For the numerical examples presented here, we assume a
basestation with M = 128 antennas serving K = 8 single-
antenna users. The channel H is composed of circular com-
plex independent identically distributed (c.c.i.i.d) Gaussian
random variables with zero mean and variance p. The addi-
tive noise at the receivers is also c.c.i.i.d Gaussian with zero
mean and unit variance, and thus p represents the per-antenna
SNR. The elements of the signal vector s are independent
QPSK symbols. Our performance metric is the symbol error
rate (SER) averaged over the K = 8 users.

Figure 2 shows the average SER achieved by several algo-
rithms based on the MRT precoder. The curve labeled MRT
refers to the MRT precoder with a full-precision DAC at the
transmitter, Q-MRT refers to the quantized MRT precoder
with no perturbation, while Q-MRT SP and Q-MRT DP refer
to the direct- and symbol-perturbed versions of Q-MRT. Fig-
ure 3 shows the same set of results, but for algorithms based
on the ZF precoder. The DP approach was implemented with
25 perturbations to the elements of the original x achieved by
either Q-MRT or Q-ZF, and the SP approach used 25 differ-
ent random perturbation vectors with ¢ = 0.25 and at each
trial chose the one that resulted in the best performance for
the worst-case user.

We see that the perturbation precoders provide a gain in
SER when the SNR is 0dB or higher, and the gain becomes
more and more significant as the SNR increases. The SP ver-
sion of Q-MRT eventually achieves the same performance as
the unquantized MRT, and the DP version dramatically out-
performs the unquantized MRT at high SNR. Both the SP and
DP approaches perform similarly for ZF, and come within 3-
4dB of the unquantized ZF precoder. Figure 4 shows how
performance improves with the number of perturbations con-
sidered for the Q-MRT approach with DP, indicating that even
better performance may be obtained if N, > 25 is possible.
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Fig. 2. Average SER performance for MRT algorithms.
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Fig. 4. Performance improvement with IV,, for Q-MRT DP.

5. CONCLUSIONS

This paper has presented methods for improving the perfor-
mance of a massive MIMO downlink when the output of
standard linear precoders is quantized by one-bit DACs at
the basestation transmitter. The methods exploit the fact that
the impact of the one-bit DACs can be determined prior to
transmission, and they operate by making perturbations to
the quantized downlink signal prior to transmission in order
to improve the worst-case performance over the user termi-
nals. Taking advantage of the assumption that the transmitted
symbols are drawn from a finite alphabet, a performance met-
ric for the pertubations is introduced that attempts to directly
minimize the probability of decoding error, rather than for ex-
ample minimizing the distance to the desired symbols. Sim-
ulations demonstrate that these perturbation approaches can
achieve a dramatic improvement in performance at medium
to high SNRs; in fact, the DP approach allows the quantized
MRT precoder to significantly outperform standard MRT
employing full precision DACs.
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