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ABSTRACT

A novel reduced-complexity digital predistortion (DPD) solution
is presented in this paper. The proposed DPD can suppress the
unwanted distortions due to power amplifier (PA) nonlinearity and
I/Q modulator impairments in direct conversion transmitters using
reduced-bandwidth filtered basis functions. Moreover, the DPD
parameter estimation is based on very simple decorrelation based
closed-loop processing and reduced-bandwidth observation, thus
further reducing the overall complexity. The proposed DPD can be
used in large array or massive MIMO systems with large number of
radio transceivers and PAs, where reducing the complexity of the
DPD processing is very critical.

Index Terms— 5G, Digital Predistortion, Direct Conversion
Transmitters, I/Q imbalance, Massive MIMO, Power Amplifiers.

1. INTRODUCTION

Massive MIMO is anticipated to be one of the key enablers of en-
hanced spectral and energy efficiency in future wireless communi-
cation systems [1]. The usage of a large number of antennas at the
transmitter, each of which has its own RF chain, implies an urgent
need for reducing the cost and size of these RF chains, while max-
imizing their energy efficiency at the same time. Direct conversion
transmitters, typically used in most mobile devices, are considered
a good candidate due to their small form factor, and reduced bill of
materials [2]. However, such transmitter architectures typically have
their own challenges, such as I/Q imbalance, local oscillator (LO)
leakage, etc [2]. Moreover, using large and power hungry linear
power amplifiers (PAs) is practically impossible in massive MIMO
transmitters. Low cost, small size and highly energy-efficient, and
therefore highly nonlinear PAs operating close to saturation, are ex-
pected to be adopted.

Some recent studies have investigated the impact of hardware
impairments, such as PA nonlinearities, I/Q imbalance, etc, on mas-
sive MIMO transmitters [3–8]. These studies show that such impair-
ments can significantly degrade both the spectral efficiency and the
energy efficiency, both of which are fundamental objectives of mas-
sive MIMO. In [3], the analysis was based on the assumption that
appropriate compensation algorithms have been applied and thus the
authors focused only on the residual hardware impairments. Mean-
while, in [4], the out-of-band radiation due to PA nonlinearity is an-
alyzed in both single antenna and massive MIMO transmitter sce-
narios, assuming a memoryless polynomial model for each PA unit.
It was shown that the adjacent channel leakage ratio (ACLR) due to
PA nonlinearity in the massive MIMO scenario is, on average, equal
to the single antenna scenario when transmitting with the same total
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sum-power. This implies that when a highly nonlinear PA is used per
RF chain, as mentioned earlier, significant out-of-band distortion can
occur in massive MIMO transmitters that can easily interfere with
neighboring transmissions and/or violate spurious emission limits,
as also demonstrated in [5]. Moreover, the unwanted emissions be-
come even worse when the I/Q modulator impairments interact with
the PA nonlinearity as demonstrated in [9], in the context of single
antenna transmitters.

In terms of the impact of hardware impairments on the transmit-
ted signal quality, it has also been shown in [5] that the error vec-
tor magnitude (EVM) degradation due to PA nonlinearity can com-
promise the spectral efficiency of the massive MIMO base station,
where at least 6 dB backoff was shown to be required in order to
reach the maximum targeted data rate. Moreover, in [6], the authors
demonstrated that when practical PA models are used in a massive
MIMO base station, the signal to interference and noise ratio (SINR)
at the user receiver can be significantly degraded. On the other hand,
impairments resulting from the I/Q modulator have also been shown
in [8] to have an impact on the system performance in large array
systems, where it was demonstrated that in case of a MIMO trans-
mitter with 20 RF chains, I/Q imbalance per RF chain degrades the
overall EVM. It was also shown that sufficient I/Q imbalance pre-
compenstion can result in around 13 dB enhancement in the EVM,
which can be directly translated into enhanced spectral efficiency.

Applying backoff to overcome the PA distortion is not an attrac-
tive solution since it requires using larger PAs operating in the linear
region. As a result, the cost and size of each RF chain will increase
and the energy efficiency will decrease, which directly translates to
an increased running cost in terms of power supply and cooling. A
better solution is to use smaller PAs that operate more efficiently
close(r) to saturation, while using a low complexity linearization
method to reduce both the in-band and the out-of-band distortion
per RF chain. This is the main scope of this paper.

2. LOW COMPLEXITY DPD CONCEPT

Digital predistortion (DPD) is considered the most widely used and
effective linearization technique, both from performance and flexi-
bility points of view [10]. However, the reason why classical DPD
techniques might be considered unfit for massive MIMO is primarily
due to the large additional complexity in terms of the required digi-
tal front-end processing in the transmitter main path, as well as the
extra hardware and processing required in the feedback receiver(s).
On the other hand, and as discussed in the previous section, there
is clear need for a DPD solution that can tackle both the PA and
I/Q modulator impairments, while at the same time having feasible
running complexity, especially when adopted in a per RF chain or
per-antenna manner as illustrated in Fig. 1.

In this paper, a novel reduced-complexity DPD solution that can
jointly tackle the PA nonlinearity, I/Q imbalance, and LO leakage in
direct conversion transmitters is proposed. The proposed DPD builds
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Fig. 1. OFDM-based massive MIMO transmitter with DPD, assum-
ing a direct conversion architecture per RF chain and per-antenna PA
units. Only the main transmitter paths are shown in this figure.

on the structure in [9], while using lower rate filtered basis functions
in the DPD main path, thus significantly reducing the running com-
plexity of the DPD. Moreover, a novel closed-loop parameter esti-
mation solution building on reduced-bandwidth observation of the
PA output signal, combined with highly simple correlation type of
processing, is described. It is worth mentioning that the idea of us-
ing filtered basis functions has been introduced earlier in [11, 12]
in the context of ILA-based learning, and only PA nonlinearity was
considered. In summary, the complexity reduction achieved by the
proposed DPD solution is fourfold and can be summarized as

• Filtered basis functions are used in the DPD main processing
path, thus reducing the baseband processing sample rate, as
well as the cost and sampling rate of the DACs.

• Reduced-bandwidth observation of the PA output can be
adopted, through the feedback receiver, thus reducing the
required sampling rate of the ADC in the feedback path.

• The proposed DPD learning utilizes a closed loop estimation
solution which is less sensitive to noisy observations in the
feedback receiver, compared to widely-used ILA based DPD
learning [13]. This implies the option of using simpler, and
lower cost components in the feedback receiver.

• The proposed DPD parameter estimation and adaptation al-
gorithm builds on simple decorrelation-based processing that
does not require computationally demanding operations (e.g.,
matrix inversions, etc).

It is noted that the mutual coupling between the antenna ports has
been ignored in this work, assuming sufficient isolation, in order to
simplify the processing. However, it is considered an interesting
aspect for future work in this research field.

3. INJECTION-BASED JOINT PA AND I/Q MODULATOR
DPD PROCESSING STRUCTURE

The proposed DPD is based on the well-known parallel Hammer-
stein (PH) structure [14] whose baseband equivalent static nonlinear
(SNL) basis functions read x(n)|x(n)|p−1, where x(n) is the com-
plex baseband input signal, and p is the nonlinearity order of the

corresponding basis function. These basis functions are then filtered
and decimated to a lower sample rate. The decimation filter is a LPF
f̄n whose bandwidth is less than P times the bandwidth of the orig-
inal baseband signal x(n), where P is the maximum nonlinearity
order of the DPD. The DPD running complexity is thus greatly re-
duced due to the reduction in the required sample rate in the rest of
the processing chain. Meanwhile, the linearization is focused only
on the passband of the decimation filter f̄n, while the distortion lying
in the filter stopband is assumed to be filtered out by the RF transmit
filter. The filtered basis functions are then orthogonalized [15] for
better numerical properties and stability when used in the adaptive
filtering and parameter estimation context.

The key idea of the proposed injection-based DPD concept is
to inject a proper additional low-power cancellation signal into the
direct conversion transmitter input, such that the level of the distor-
tions due to PA nonlinearity, I/Q imbalance, and LO leakage at the
PA output is reduced. An appropriate digital injection signal can
be obtained by adopting a widely linear transformation of the pre-
viously mentioned orthogonal filtered basis functions, denoted by
sp(n), as also illustrated in Fig. 2. However, only the distortion
terms are injected in this architecture, which implies that the lin-
ear non-conjugated term s1(n) is not injected, which thus further
reduces the complexity of the proposed DPD. The PA input signal
x̃(n), with DPD included, reads then

x̃(n) = x(n) +

P∑
p=3
p odd

αp,n ? sp(n) +

Q∑
q=1
q odd

βq,n ? s
∗
q(n) + c, (1)

where ? denotes convolution, P and Q are the nonlinearity orders
of the main and conjugate branches respectively, and c is an appro-
priate constant added to suppress the LO leakage at the PA output.
The nonlinearity order Q can, in general, be assumed to be less than
P , and thus the total number of the DPD filters is not substantially
larger than in any ordinary PH structure, while still having the abil-
ity to efficiently suppress both the PA and the I/Q modulator induced
distortions. The achievable suppression of the unwanted distortion
products depends directly on the selection and optimization of the
DPD filter coefficients αp,n, βq,n, and the constant c. This is ad-
dressed in detail in the next section.

4. DECORRELATION-BASED DPD PARAMETER
LEARNING

In this section, we formulate a computationally feasible and highly
efficient closed-loop estimation algorithm for learning the proposed
DPD filter coefficients, based on the decorrelation principle [16].
The DPD parameter optimization task is formulated here as mini-
mizing the correlation between the distortion at the PA output due to
PA nonlinearity, I/Q imbalance, and LO leakage, and the orthogonal-
ized filtered SNL basis functions discussed in the previous section.
The specific basis function used for LO leakage mitigation is simply
a vector of ones whose complex gain c in (1) is then estimated using
the decorrelation principle as well.

The filtered baseband equivalent nonlinear distortion observed
at the PA output, denoted by e(n), can be calculated as follows

e(n) = [fn ? y(n)/G]− x(n) (2)

where y(n) is the baseband equivalent PA output signal, andG is the
complex linear gain of the PA which is assumed to be known using
simple estimation techniques, e.g., least squares. The observation is
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Fig. 2. Block diagram of the proposed DPD adopting closed-loop learning. Thick lines correspond to complex I/Q processing.

filtered by the LPF fn, which has the same bandwidth as the filter
f̄n used for basis function generation [11, 12]. This implies that the
proposed solution requires only a narrowband feedback observation,
thus reducing the complexity of the feedback receiver as explained
earlier. Closed-loop DPD learning is in fact less sensitive, compared
to ILA-based solutions, to any sort of mismatch between the filters
fn and f̄n used for filtering the observation and the basis functions,
respectively [13], which implies more flexibility in the design and
implementation of these two filters.

The decorrelation-based learning principle is then applied using
the filtered basis functions sp(n) and their complex conjugates. As
the name suggests, the learning is based on finding the DPD filter
coefficients αp,n, βq,n, and c that minimize the correlation between
the extracted nonlinear distortion at the PA output, e(n), and the
corresponding basis function samples, as also illustrated in Fig. 2.
Then, assuming an estimation block size of M samples and DPD
filter memory depths of Np and Nq per each of the filtered basis
functions, the following vectors and matrices, which stack the nec-
essary samples and the corresponding DPD filter coefficients within
processing block m, can be defined:

sp(nm) = [sp(nm) ... sp(nm −Np)], (3)
s̄q(nm) = [s∗q(nm)) ... s∗q(nm −Nq)], (4)

Sp(m) = [sp(nm)T ... sp(nm +M − 1)T ]T , (5)

S̄q(m) = [̄sq(nm)T ... s̄q(nm +M − 1)T ]T , (6)

b(m) = [1 1 ... 1]T , (7)
S(m) = [S3(m) S5(m) ... SP (m),

S̄1(m) S̄3(m) ... S̄Q(m) b(m)], (8)

αp(m) = [αp,0(m) αp,1(m) ... αp,Np(m)]H , (9)

βq(m) = [βq,0(m) βq,1(m) ... βq,Nq (m)]H , (10)

ᾱ(m) = [α3(m)T α5(m)T ...αP (m)T ,

β1(m)T β3(m)T ... βQ(m)T c∗(m)]T , (11)

where nm denotes the index of the first sample of block m. The
block-adaptive decorrelation-based DPD coefficient update, with
learning rate µ, then reads

ᾱ(m+ 1) = ᾱ(m)− µ [e(m)HS(m)]T , (12)

where e(m) = [e(nm) ...e(nm+M−1)]T is the error signal vector,
while S(m) denotes the filter input data matrix, all within the pro-
cessing block m. The obtained new DPD coefficients ᾱ(m+ 1) are
then applied on the next block of M samples. It is clear from (12)
that the proposed DPD parameter estimation requires very simple
correlation type of computations which makes the solution quite at-
tractive for the target application. As a special case withM = 1, the
learning rule corresponds to sample-adaptive instantaneous decorre-
lation between the adopted basis function samples and the distortion
at the PA output, while for M > 1 the correlation is measured over
the block of M samples for each iteration. In general, the coeffi-
cient update in (12) resembles largely the classical least-mean square
(LMS) algorithm, and thus, e.g., the step-size selection is straight-
forward.

5. SIMULATION RESULTS AND ANALYSIS

In this section, a quantitative performance analysis of the proposed
DPD solution is presented using Matlab simulations with practical
measured models for mobile-like PAs designed for low-cost devices.
A typical massive MIMO base station may easily transmit at a total
power in the order of +40 · · · + 46 dBm. Thus, if assuming 100
antennas per base station, each antenna/PA transmits then at roughly
+20 · · · + 26 dBm. Consequently, the PA model used for simulat-
ing a single arbitrary RF chain of a massive MIMO transmitter is a
ninth-order PH model that has been identified using measurements
with a true mobile PA transmitting at +22 dBm. I/Q imbalance and
LO leakage are also included in the simulations, where the amplitude
and phase imbalances are 7% and 5◦ respectively. The nonlinearity
orders P and Q of the DPD are 9 and 3 respectively, and the DPD
memory depths Np and Nq are equal to 1 (i.e., 2 memory taps per
filter). The learning block-size M used by the proposed DPD is 10k
samples, and 30 block adaptive iterations are used. In order to eval-
uate the performance of the DPD in a quantitative manner, both the
inband waveform purity and the adjacent channel interference due
to spectral regrowth are quantified using the error vector magnitude
(EVM), and the ACLR, respectively [17].

Fig. 3 shows the normalized PSD of a contiguous LTE-A type
of carrier aggregation (CA) scenario composed of four 5 MHz
OFDM(A) component carriers (CCs), with and without DPD pro-
cessing. Iterative clipping and filtering based peak to average power
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Table 1. CA simulation scenario with four 5 MHz CCs, Tx power =
+22 dBm, composite PAPR = 8.22 dB.

EVM [%] ACLR L / R (dBc)
Without DPD 7.7068 31.7923 / 32.6808
With PA DPD 5.8584 48.1204 / 48.9318
With PA + IQ Mod. DPD 0.8075 55.9932 / 55.5335
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Fig. 3. Baseband equivalent spectra, with and without DPD, of a
contiguous intraband CA transmitter with four 5 MHz OFDM car-
riers and 16-QAM subcarrier modulation. The PA model is a ninth
order PH PA with memory extracted from a real mobile PA at +22
dBm. I/Q imbalance and LO leakage are also included.

ratio (PAPR) reduction approach [18] is also applied to the transmit
signal, prior to the DPD stage. Moreover, filtered basis functions are
used where the DPD running bandwidth and feedback observation
bandwidth are both limited to 3 times the signal bandwidth (i.e.,
ACLR measurement zone) instead of 9 (DPD nonlinearity order).
The quantitative performance results in this scenario are reported in
Table 1, where the ACLR is measured over the adjacent 20 MHz
channels. Also a PA-only DPD is simulated, for reference, where the
conjugated basis functions are excluded. A significant improvement
in both the EVM and ACLR is achieved when using the proposed
DPD, despite its remarkable simplicity. It is noted that incorporating
the I/Q image suppression into the DPD processing has particularly
clear impact on the achievable EVM performance. Fig. 4 presents
an example of the coefficient behavior of the proposed DPD, during
the learning phase, evidencing fast and reliable convergence.

Meanwhile, another simulation example is provided in Fig. 5,
where three of the four CCs are deliberately switched off to better
visualize the I/Q image component and LO leakage before and af-
ter applying the proposed DPD. Excellent suppression of the mirror
image and LO leakage due to I/Q modulator impairments, in addi-
tion to the adjacent spectral regrowth due to the PA nonlinearity is
achieved.

6. CONCLUSIONS

A reduced-complexity digital predistortion (DPD) was proposed in
this paper that can jointly mitigate the unwanted distortions due to
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Fig. 4. Convergence of the first memory taps of the different DPD fil-
ters using a single realization of a contiguous intraband CA transmit-
ter with four 5 MHz OFDM carriers and 16-QAM subcarrier modu-
lation.
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Fig. 5. Baseband equivalent spectra, with and without DPD, of a
contiguous intraband CA transmitter with only one out of the four
5 MHz OFDM carriers switched on, while the remaining three are
switched off.

transmitter power amplifier and I/Q modulator imperfections. The
proposed solution facilitates reduced sampling rate both in the DPD
main path processing, as well as in the feedback observation path.
Moreover, the proposed solution is based on a simple closed-loop
learning algorithm with decorrelation type of computations. These
advantages make the solution very attractive to massive MIMO
transmitters where a large number of PA units are used, each requir-
ing a separate DPD. Practical simulations using measured models
of off-the-shelf PAs, and I/Q modulator imperfections, show that
the proposed solution gives excellent linearization results in terms
of both EVM and ACLR. The proposed DPD allows for the usage
of small, cheap, and highly efficient analog components in massive
MIMO transmitters without sacrificing the system performance.
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