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ABSTRACT

Lensless imaging systems, such as the recently proposed
FlatCam, offer numerous advantages over lens-based systems
such as a thin form-factor, low cost, and higher light through-
put. However, little work has been done in analyzing these
systems’ depth of field characteristics. A depth-dependent
calibration step is necessary to obtain the image from the
FlatCam measurements, and this calibration determines the
system’s depth of field. In this paper, we characterize the
FlatCam’s depth of field properties and show that (a) for
scene depths on the order of tens of centimeters, it is possible
to perform depth-selective refocusing from a single captured
image and (b) for sufficiently large scene depths, calibrating
for one depth can provide a very large depth of field.

Index Terms— Lensless imaging, depth of field, coded
aperture, selective refocusing

1. INTRODUCTION

Recent years have seen the emergence of a new generation
of imaging systems: lensless cameras. While the major-
ity of imaging devices rely on optical lenses to focus scene
light into images, lensless systems instead encode the scene
into its measurements by replacing the lens with a light
modulator atop the image sensor. Researchers have used
various types of light modulators for these lensless systems
such as liquid crystal modulators [1], programmable spatial-
light-modulators [2], and chrome-on-quartz photomasks [3].
Lensless imaging has also been integrated into other research
areas such as compressive sensing [4] and microscopy [5, 6].

Lensless imaging systems offer numerous advantages
over lens-based cameras. Lenses force constraints on both
the physical geometry of the device and the geometric map-
ping of the scene to the image. Flexible or curved lens-based
cameras, for example, are currently not possible due to the
rigidity and bulk of lenses, which are eliminated in lensless
systems. Also, with lensless systems, the light modulating
element atop the sensor can be configured in infinitely many
ways, creating numerous possible mappings from the scene to
the sensor. Furthermore, lensless systems can achieve lower
manufacturing cost, better wavelength scaling, and higher
light throughput compared to lens-based cameras [7].

(a) (b)

Fig. 1: (a) A simple 1D model of FlatCam. A single pixel re-
ceives light rays (orange) coming from multiple light sources.
The mask selects which light rays to pass and which to block.
(b) [3] suggests that the outer product of two Maximum
Length Sequences [8], shown here, has robust reconstruction
properties for the mask’s apertures.

The depth of field characteristics of lens-based cameras
are well studied. Focusing is achieved by altering the distance
between the lens aperture and the sensor. A wide or narrow
depth of field is obtained by shrinking or opening the lens
aperture, respectively. However, the depth of field properties
of lensless systems are not as well understood.

This paper aims to characterize the depth of field prop-
erties of FlatCam [3], a lensless imaging system that uses a
mask of multiple pinhole-like openings or apertures atop a
bare image sensor. A major factor in this system’s depth of
field characteristics is the reconstruction procedure necessary
to obtain the scene image from the sensor measurements. The
parameters of FlatCam’s reconstruction algorithm, obtained
via a calibration step, determine which scene depths are in fo-
cus in the image. Each calibration procedure is performed for
a certain scene depth, thus optimizing the reconstruction for
focusing on that depth. Multiple calibration procedures can
be performed to obtain reconstruction parameters for multi-
ple scene depths.

Two key results follow from our analysis. First, for small
distances on the order of tens of centimeters or shorter, refo-
cusing can be performed by parametrizing the reconstruction
according to the desired depth of focus. Thus, multiple im-
ages with different focus depths can be obtained from a single
FlatCam capture. Second, for greater distances on the order
of a foot and larger, a large depth of field is achievable with
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(a) Calibrated at d1 (b) Calibrated at d2

Fig. 2: A 1D model of FlatCam withM = 2 sensor pixels and
N = 2 scene points is shown. The aim is to reconstruct the
N = 2 scene points. (a) The system is calibrated at d1. The
M ×N = 4 rays intersect atN = 2 scene points at this depth
plane. This Φ matrix would not represent light sources from
depth d2 as well because the same light rays do not intersect
the depth plane atN = 2 scene points. (b) To more accurately
model scene points in depth d2, the elements of Φ should be
changed to describe a different set of light rays.

only one set of reconstruction parameters, thereby showing
that only one calibration is necessary for imaging at a large
range of depths for farther scenes.

2. THE FLATCAM LENSLESS IMAGING SYSTEM

This section provides a brief overview of FlatCam. We refer
the interested reader to [3, 7] for a more detailed explanation
of the system.

2.1. Linear Combination of Scene Points

In a lens-based system, the optical lens forces each sensor
pixel to only interact with a small portion of the scene. With-
out the lens, an individual sensor pixel would average light
from all the points in the scene. By placing a mask of aper-
tures atop a bare image sensor, the sensor pixel only receives
intensities from scene points whose light rays to the sensor
pixel would intersect an aperture, as illustrated in Figure 1.

Each sensor pixel then sees a weighted or linear combina-
tion of all the scene points, where these weights depend heav-
ily on the location of the apertures. For example, the weight
of a scene point that has an aperture on its path to the sen-
sor pixel would have a larger weight than one that does not.
The measurement of an individual sensor pixel, yi, can then
be written as yi = 〈φi, x〉, where x is the vectorized form of
the scene points’ intensities and φi is the vector containing
the weights applied to each scene point’s intensity. Extending
this to multiple sensor pixels yields

y = Φx, (1)

where Φ is a matrix with each row containing the weights
applied to the scene points for an individual sensor pixel. A
separable mask can also be used to yield a separable Φ ma-
trix, decreasing the number of its needed elements [3]. When

FlatCam captures an image, the goal is to recover the scene
intensities x from the sensor measurements y. Given Φ, this
becomes an inverse problem that can be solved using meth-
ods such as truncated SVD [9], Tikhonov regularization, or
optimization-based methods.

2.2. Ray Tracing and Dependence on Depth

Φij , or the element in the ith row and jth column of the Φ
matrix refers to how much of the irradiance of scene point xj
is captured by the sensor pixel yi. One way to obtain a rough
estimate of the elements of Φ is to use ray tracing for every
possible pair of sensor pixel and scene point.

A simple case of ray tracing is to assume a two-dimensional
scene that resides on a plane parallel to the image sensor. A
grid of locations on this plane is used to define the locations
of the scene points, x. The perpendicular distance between
the scene plane and the image sensor is the scene depth. A
ray is then traced from each scene point xj to each sensor
pixel yi. In the simplest case, we can assign Φij to be 1 if the
ray intersects a pinhole and 0 otherwise. In reality, Φ would
contain values between 0 and 1 because of light diffraction,
sensor characteristics, and other physical effects.

In this way, each element of Φ describes the travel of a ray
of light from the scene, through the FlatCam mask, and into
the sensor. Let M be the number of elements of y and N be
the number of elements of x. While there are M × N rays
being described in Φ, they each only intersect the scene plane
at one of N scene points, which make up the N pixels in the
reconstructed image. However, at any other scene depth plane
aside from the initial one, these rays will intersect at more
than N points. Attempting to reconstruct N scene points at
another scene depth gives an image that is blurred. This is
illustrated in Figure 2.

While ray tracing provides an intuitive understanding of
the Φ matrix, in reality, it is more practical to obtain Φ using
a depth-dependent calibration procedure explained in [3, 7].
The scene depth used in obtaining the Φ matrix is the cal-
ibration depth. Calibrating for different calibration depths
yields different Φ matrices, with each Φ being optimized for
reconstructing images captured at its calibration depth. Re-
constructing an image captured at a depth other than the cali-
bration depth may yield a blurred image, according to reasons
discussed above.

3. DEPTH OF FIELD ANALYSIS

Typically, one captures images of objects at multiple dis-
tances, and it is rare that the imaged object is at a precisely
known depth. The choice of the calibration depth used to
obtain the Φ matrix for reconstruction may then become
crucial for image quality. In this section, we evaluate the
resolution quality of the reconstructed image as a function of
the calibration depth and the actual scene depth (the object’s
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(a)

(b)

Fig. 3: (a) Simulated reconstructed images for various cali-
bration and scene depths. The image is clearest when the two
depths are equal. The quality difference for larger depths is
very small. (b) A heatmap of the smallest stripe pattern with
MC ≥ 0.15. The calibration depth (y-axis) is the depth the Φ
matrix is modeled at for reconstruction while the scene depth
(x-axis) is the depth used to simulate image capture.

depth during capture) using simulation based on ray-tracing
methods explained above. We simulate our sensor to have
512 × 512 pixels, a pixel pitch of 5.3 µm, 12-bit precision
with 1-bit noise, and a half-width half-maximum acceptance
angle of 25◦. The scene is discretized to have 512× 512 pix-
els. We simulate our mask to be 1 mm away from the sensor
with apertures 25 µm × 25 µm in size in the pattern of the
outer product of two maximum length sequences (MLS) [8].
A prototype with these parameters was reported in [7].

To quantify the resolution of a reconstructed image, we
calculate the Modulation Transfer Function (MTF) with the
technique used by [10]. The FlatCam is used to image a reg-
ular pattern of 3 white stripes alternating with 2 black stripes,
a setup that mimics a USAF 1951 resolution target. We then
define the modulation contrast (MC) to be

MC =
Imax − Imin

Imax + Imin
,

(a) Simulation setup

(b) 8 cm reconstruction (c) 64 cm reconstruction

Fig. 4: (a) FlatCam is simulated to capture two objects: one at
8 cm away and one at 64 cm away. The insets show the Flat-
Cam sensor measurements and the image that would be cap-
tured by a standard camera. (b-c) Images are reconstructed
from the FlatCam measurements with two Φ matrices: one
calibrated at 8 cm and one calibrated at 64 cm. The recon-
structed images show that one can select which object to focus
on by choosing the appropriate Φ matrix for reconstruction.

where Imax is the mean of the 3 maxima of the white stripes
and Imin is the mean of the 2 minima of the black stripes of
the resulting reconstructed image. In the ideal case, the white
stripes would have a value of 1, and the black stripes would
have a value of 0, yielding MC = 1. The worst case scenario
is when the stripes blur and bleed into each other, leaving a
uniform intensity throughout the image and yielding MC =
0. We define MC = 0.15 to be the minimum quantity such
that the stripes can be visually resolved.

The target image the FlatCam is simulated to capture is
an image containing patterns of stripes with different widths,
as seen in Figure 3. Since it contains maximum contrast, this
test image provides the worst case scenario for the resolution
quality of the reconstruction of any scene. The target image
is simulated to cover the entire field of view of FlatCam, irre-
spective of scene depth, discretized to 512 × 512. The field
of view is determined by the sensor pixel’s acceptance angle,
in this case -25◦ to 25◦. This results in the two center scene
points having an angular distance of approximately 0.109◦

from the sensor’s perspective regardless of depth.
We simulate the FlatCam capturing this image at a number

of depths (the scene depths) using a method based on ray trac-
ing. We simulate calibration by obtaining Φ matrices for dif-
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ferent calibration depths using ray tracing methods. For each
of the captured images, we solve for x in (1) using Tikhonov
regularization for the different Φ matrices (different calibra-
tion depths). Figure 3a shows some samples of reconstructed
images for a few calibration and scene depths. The images are
clearest when the calibration depths equal the scene depths,
and images at larger depths have very similar quality.

For each of these reconstructed images, we then calculate
the MC value for each stripe width. Larger stripes would be
easier to resolve, thus yielding larger MC values. Figure 3b
shows a heatmap of the stripe width such that MC ≥ 0.15
for all horizontal stripes of that size and larger, that is, the
smallest resolvable stripe.

The heatmap shows that the narrowest stripes resolvable
by this simulated system are those with 1

8 line pairs per pixel.
For a given calibration depth, we define the imaging depth
of field to be the range of scene depths such that the recon-
structed image can resolve the stripes of 1

8 line pairs per pixel.
The heatmap shows that the resolution improves as the scene
approaches the calibration depth. Note that for calibration
distances under around 50 cm, the depth of field is very nar-
row. This allows for selective refocusing because reconstruct-
ing at a particular calibration depth leaves everything outside
of this narrow field out of focus. For distances larger than
50 cm, the depth of field is very large. This allows imaging
for a large range of scene depths with only one calibration.
Both properties are desirable. The former allows post-capture
refocusing for small distances, while the latter allows a wide
range of imaging with minimal calibrations.

4. SELECTIVE REFOCUSING

The narrow depth of field for small depths enables selective
refocusing. Given two objects at different depths and one
FlatCam image capture, one can choose which object to focus
on by selecting the calibration depth with which to perform
image reconstruction, provided the objects are not both at a
large depth. This is in contrast to lens-based systems where
the distance of the lens and the sensor determines the depth
of focus and cannot be decided post-capture. Figure 4 shows
a simulation wherein FlatCam captures a scene with two ob-
jects at different depths. With only one image capture, one
can reconstruct two different images focusing on each of the
objects. [7] shows this experimentally with a FlatCam proto-
type for depths of 7 cm and 27 cm, as shown in Figure 5.

5. MINIMAL CALIBRATIONS FOR LARGE DEPTH
OF FIELD

Another observation from Figure 3b is that larger calibration
depths have a large imaging depth of field. For example, a
calibration depth of 55.9 cm has a depth of field ranging from
25.5 cm onwards. If one is limited to only one calibration,
calibrating at 55.9 cm still allows focused imaging of objects

(a) 7 cm reconstruction (b) 27 cm reconstruction

Fig. 5: A FlatCam prototype is used to take a photo of two
words. The word “FLAT” is 7 cm from the system, while the
word “CAM” is 27 cm away. The images are reconstructed
with the two calibration depths, resulting in photos focused
on the different words. This figure is modified from [7].

from 25.5 cm onwards. By choosing additional calibration
depths wisely, one can expand the depth of field to include
scene depths below 25.5 cm with minimal calibrations.

Table 1: Calibration Depths for Complete Depth of Field.

Calibration Depth (cm) Imaging Depth of Field (cm)
8.0 8.0 – 9.4
10.0 8.3 – 12.4
17.0 12.4 – 25.5
55.9 25.5 onwards

Table 1 shows for this particular simulation the calibration
depths that would yield the largest depth of field. Only four
calibrations are required to have a depth of field from 8cm
onwards. While these numbers may not hold exactly for Flat-
Cam systems with different physical specifications, the trend
is expected to be similar, such that a few calibrations would
be sufficient to enable imaging at a large range of depths.

6. CONCLUSION

Lensless cameras, such as the FlatCam, provide new imaging
architectures with numerous advantages over lens-based sys-
tems. By characterizing the FlatCam’s depth of field proper-
ties, we show that it is able to selectively refocus at different
depths after image capture and to image at a large depth of
field with only one calibration. Such features would be bene-
ficial for using FlatCam in real applications.
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